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Preface

There are many fine books on singular perturbation theory and how to solve
singular perturbation problems. Many readers of this book will already be
familiar with one or more of them. What distinguishes this book from the
others is its rigorous development and rigorous application of the method of
matched asymptotic expansions. The point of view is that certain functions
have a certain structure for which this method is valid and these are precisely
the kinds of functions that arise in a wide variety of differential equation and
integration problems.

This book is intended to serve primarily as a supplement or follow-up to
a typical first year graduate course in asymptotic and perturbation analysis.
Hopefully it will also prove to be a valuable companion to all those who do,
or wish to do, rigorous work in the field. The basic theory for the book is
presented in Chapter 1. Then there are four chapters in which this theory is
applied to a sequence of ordinary differential equation problems. There are
a number of previously unpublished results. One of these is the uniformly
valid expansion at the end of Chapter 4 for a problem involving logarithms
once studied by L. E. Fraenkel. Another is the unexpectedly simple uniformly
valid Bessel function expansion established at the end of Chapter 3. All the
differential equations chosen for study in the text are linear, but this is not
because of any limitation of the theory. Indeed, much has been done, and
much more can be done, in applying the theory to nonlinear problems, as
noted in Exercise 3.2, for example.

Another unique feature of this book is its inclusion of several Maple pro-
grams for computing the terms of the various asymptotic expansions that
arise in solving the problems. Developing these was a nice break from the
otherwise sometimes tedious hard analysis in the book. They could well have
just been designated as exercises, indeed a few have been, but at the same
time, until one gets familiar with symbolic programming, there is nothing like
having a few model programs around to show the way, or at least a possible
way. Studying the programs will also reveal some mathematical manipula-
tions that are not fully developed within the text itself.

v



vi Preface

There is a short bibliography of key references at the end of the book.
My proof that the solution to Problem C is uniformly of order one, and the
use of this fact to complete the solution to Problem C, is essentially due to
R. E. O’Malley, Jr., as described in Section 5.4 of [12], the book by D. R.
Smith, although a different approach to this problem, one comparable to mine
for Problems D, E and I, is used by O’Malley in [7]. Also, the inclusion of

comes about as a result of my having first seen it discussed in [12]. Problem
G is the one previously studied by L. E. Fraenkel. From his work in Part
II of [3] I saw how to prove my asymptotic results for this problem by first
establishing a convergent series solution. Similarly, I first became aware of
the intriguing Problem I by reading J. Kevorkian’s account of it in the 1981
version of [5]. My own work on it began in [11]. My analysis for Problem B
is an outgrowth of results presented in [8].

All of this started for me with the publication of the first edition of [13], the
wonderful little book by Milton Van Dyke, in which the idea that matching
was somehow just a counting game and not an idea dependent on notions of
overlapping domains of validity first became apparent. L. E. Fraenkel’s three
paper series, which came soon after, was the first to try to show that the
reason this counting game works is a consequence of function structure. The
present book is an outgrowth of my attempts to clarify this connection and
to build on it.

A recurring theme in the book is that for each problem we first establish
the form of a uniformly valid asymptotic expansion for its solution. Then,
knowing this form, we are able to proceed to calculate the appropriate inner
and outer expansions from the differential equation for the problem, and
thus determine the terms of the uniformly valid expansion. Of course, when
a problem is new, one is likely to proceed differently. I discovered the form
of the uniformly valid asymptotic expansion for the solution to Problem G,
for example, by first calculating a few terms of its inner expansion, just a
power series if the initial conditions are treated as parameters, and then
examining the outer expansions of these terms. Once I had this uniformly
valid form, then from it the form of the outer expansion of the solution,
together with the required matching conditions for it, was readily determined.
There was no need for any kind of special matching considerations due to
the logarithms. In determing uniformly valid expansions for the solutions to
Problem H and Problem I, an important bit of insight, also a key step in [9],
was to factor out the oscillatory parts, as they do not have matching inner
and outer expansions.

At the end of each chapter there are exercises to do. Some of them demon-
strate results in the chapter, some fill in missing steps in the chapter, and
some are included to prepare for the next chapter. Of course, everyone is
encouraged to work all the exercises and, indeed, to add their own. Readers
interested in just a basic understanding, however, need only read Chapter 1,
possibly work Exercises 1.2 and 1.3, then read Section 2.1 and work Exercise

Problem D, which serves as a nice transition from Problem C to Problem E,
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2.1. Finally they should read Section 3.1, maybe work Exercise 3.1, and get
some experience with the Maple program for Problem C.

Lindsay A. Skinner
San Diego, California
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Chapter 1

Uniform Expansion Theory

1.1 Introduction

Roughly speaking, a function z(x, ε) is a singular perturbation of z(x, 0)
if z(x, 0) fails to approximate z(x, ε) for all x of interest when ε is small.
Uniformly valid approximations for such functions can often be found by
the so-called method of matched asymptotic expansions. The purpose of this
book is to present a rigorous development of this method and its application
to integral and differential equation problems.

Suppose, for example, that z(x, ε) = 1/(x + 2x3 + ε) and suppose we wish
to estimate

F (ε) =
∫ 1

0

z(x, ε) dx (1.1)

for 0 < ε << 1. Away from x = 0, if ε is small enough, we can neglect it
compared to x and x3, and approximate z(x, ε) by z(x, 0) = 1/(x+2x3). Near
x = 0, on the other hand, x3 is negligible compared to x, so z(x, ε) is approx-
imately 1/(x+ ε). Furthermore, away from x = 0, 1/(x+ ε) is approximately
1/x, and near x = 0, 1/(x + 2x3) is approximately 1/x. In a mouthful, the
near x = 0 approximation of the away from x = 0 approximation of z(x, ε)
matches the away from x = 0 approximation of the near x = 0 approximation
of z(x, ε). An important consequence of this apparent coincidence is that the
composite function

c(x, ε) =
1

x + ε
+

1
x + 2x3

− 1
x

(1.2)

has the same approximations near x = 0 and away from x = 0 as z(x, ε). In
fact we are about to prove the precise statement,

z(x, ε) = c(x, ε) + O(ε) (1.3)

L.A. Skinner, Singular Perturbation Theory, DOI 10.1007/978-1-4419-9958-0_1,
© Springer Science+Business Media, LLC 2011 
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Fig. 1.1 Graph of z(x, ε) together with the approximations 1/(x + ε), 1/(x + 2x3) and
c(x, ε) when ε = 0.1.

uniformly as ε → 0+ for 0 ≤ x ≤ 1. That is, there exists positive numbers εo

and B such that |z(x, ε) − c(x, ε)| ≤ Bε for all (x, ε) ∈ [0, 1] × (0, εo].
From the integral of c(x, ε), and the fact that ln(1 + ε) = O(ε) as ε → 0+,

it follows from (1.3) that

F (ε) = ln(1/ε) − (1/2) ln 3 + O(ε) (1.4)

as ε → 0+. Figure 1.1 shows the approximations 1/(x + ε) and 1/(x + 2x2),
along with z(x, ε) and c(x, ε), for ε = 0.1.

1.2 Uniform Expansion Theorem

As is customary, we will say f(x) ∈ CN ([0, 1]) if f(x) is differentiable up to
N times on the open interval (0, 1) and each derivative extends continuously
to [0, 1]. If f(x) ∈ CN ([0, 1]) for all N ≥ 0, we say f(x) ∈ C∞([0, 1]). A basic
asymptotic result is that if f(x) ∈ CN ([0, 1]), then

f(x) =
N−1∑
n=0

f [n](0)xn + O(xN ) (1.5)

on the interval [0, 1], where f [n](x) = 1
n!

(
d
dx

)n
f(x). Indeed, f(x) ∈ CN ([0, 1])

implies
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φ(x) = x−N
[
f(x) −

N−1∑
n=0

f [n](0)xn
]

(1.6)

is in C0([0, 1]), and therefore is bounded on [0, 1]. In particular, φ(0) =
f [N ](0). We will also say f(x) ∈ CN ([1,∞]) if f̂(x) ∈ CN ([0, 1]), where
f̂(x) = f(1/x). When this is the case, (1.5) holds on [0, 1] with f̂ in place of
f , and if we substitute x = 1/X, we get

f(X) =
N−1∑
n=0

f̂ [n](0)X−n + O(X−N ) (1.7)

on [1,∞]. Moreover, f̂ [1](x) = (−1/x2)f [1](1/x) = −X2 d
dX f(X) and there-

fore f̂ [n](0) = f [−n](∞), where f [−n](X) = 1
n!

(−X2 d
dX

)n
f(X). This nota-

tion readily extends to functions of more than one variable. In particular, for
m,n ≥ 0,

f [m,−n](x,X) =
1

m!n!

(
∂

∂x

)m (
−X2 ∂

∂X

)n

f(x,X) (1.8)

and we say f(x,X) ∈ CN ([0, 1] × [0,∞]) if both f(x,X) and f̂(x, X) are in
CN ([0, 1] × [0, 1]), where f̂(x,X) = f(x, 1/X).

We are going to be dealing with functions y(x, ε) that are, for some εo > 0,
expressible in the form y(x, ε) = f(x, x/ε) for all (x, ε) ∈ [0, 1]×(0, εo], where
f(x,X) ∈ C∞([0, 1]× [0,∞]). If y(x, ε) is one of these functions, then for any
δ ∈ (0, 1) and any N ≥ 1,

y(x, ε) = ONy(x, ε) + O(εN ) (1.9)

uniformly as ε → 0+ for δ ≤ x ≤ 1, where

ONy(x, ε) =
N−1∑
n=0

(ε/x)nf [0,−n](x,∞). (1.10)

Indeed, there exists BN , ΔN > 0 such that

∣∣∣f(x,X) −
N−1∑
n=0

X−nf [0,−n](x,∞)
∣∣∣ ≤ BNX−N (1.11)

whenever (x,X) ∈ [0, 1] × [ΔN ,∞], and therefore

∣∣∣f(x, x/ε) −
N−1∑
n=0

(ε/x)nf [0,−n](x,∞)
∣∣∣ ≤ CNεN (1.12)
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for all (x, ε) ∈ [δ, 1] × (0, dN ], where CN = BN/δN and dN = δ/ΔN . The
function ONy(x, ε) is called the N -term outer expansion of y(x, ε). Of course,
x−nf [0,−n](x,∞) = y[0,n](x, 0).

In addition to (1.9), for any ε ∈ (0, εo] and integer M ≥ 1,

y(x, ε) = IMy(x, ε) + O(xM ) (1.13)

as x → 0+, where

IMy(x, ε) =
M−1∑
m=0

xmf [m,0](0, x/ε). (1.14)

We call IMy(x, ε) the M -term inner expansion of y(x, ε). Note that it is the
first M terms in the power series expansion of Y (X, ε) = y(εX, ε) as ε → 0+,
assuming X > 0, followed by the substitution X = x/ε. Applying this idea
to ONy(x, ε) leads to

IMONy(x, ε) =
M−1∑
m=0

xm
N−1∑
n=0

(ε/x)nf [m,−n](0,∞). (1.15)

Similarly, the first N terms in the expansion of IMy(x, ε) as ε → 0+, assuming
x > 0, yields

ONIMy(x, ε) =
N−1∑
n=0

(ε/x)n
M−1∑
m=0

xmf [m,−n](0,∞). (1.16)

Obviously, IMONy(x, ε) = ONIMy(x, ε) for any M, N ≥ 1. Note also
that ONIMONy(x, ε) = IMONy(x, ε) and IMONIMy(x, ε) = ONIMy(x, ε).

Ny(x, ε) = [ON+IN−ONIN ]y(x, ε)
has the same M -term inner and outer expansions, for any M ≤ N , as y(x, ε).
In addition, note that ONINy(x, ε) can be divided into a part which is finite
at x = 0 and a part which equals 0 at x = ∞. The first of these parts is

N−1∑
n=0

(ε/x)n
N−1∑
m=n

xmf [m,−n](0,∞) =
N−1∑
m=0

εm(x/ε)m
m∑

n=0

(ε/x)nf [m,−n](0,∞).

(1.17)
Thus it is clear that

CNy(x, ε) =
N−1∑
n=0

εn[un(x) + vn(x/ε)], (1.18)

where

un(x) = x−n
[
f [0,−n](x,∞) −

n−1∑
m=0

xmf [m,−n](0,∞)
]
, (1.19)

Therefore the N -term composite function C
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vm(X) = Xm
[
f [m,0](0, X) −

m∑
n=0

X−nf [m,−n](0,∞)
]
. (1.20)

Also, f(x, X) ∈ C∞([0, 1] × [0,∞]) implies un(x) ∈ C∞([0, 1]) and vm(X) ∈
C∞([0,∞]). We can now state the theorem that is the basis for all our work
in this text.

Theorem 1. If for some εo > 0, y(x, ε) = f(x, x/ε) for all (x, ε) ∈ [0, 1] ×
(0, εo], where f(x,X) ∈ C2N ([0, 1] × [0,∞]), then

y(x, ε) =
N−1∑
n=0

εn[un(x) + vn(x/ε)] + O(εN ) (1.21)

uniformly as ε → 0+ for 0 ≤ x ≤ 1, where un(x) and vn(X) are the functions
defined by (1.19) and (1.20).

1.3 Some Calculations

Before turning to the proof of Theorem 1, let us see how it applies to the
problem of Section 1.1. If we let y(x, ε) = εz(x, ε), then y(x, ε) = f(x, x/ε),
where f(x,X) = 1/[1 + X(1 + 2x2)], and obviously f(x, X) ∈ C∞([0, 1] ×
[0,∞]). From

y(x, ε) =
ε/(x + 2x3)

1 + ε/(x + 2x3)
(1.22)

for x �= 0, it is apparent that

ONy(x, ε) =
N−1∑
n=1

(−1)n+1 εn

(x + 2x3)n
. (1.23)

In particular,

O1y(x, ε) = 0, O2y(x, ε) =
ε

x + 2x3
. (1.24)

Similarly,

y(εX, ε) =
1/(1 + X)

1 + 2ε2X3/(1 + X)
, (1.25)

so we have
I1y(x, ε) = I2y(x, ε) =

1
1 + x/ε

. (1.26)

Next, from either (1.24) or (1.26) we get

O1I1y(x, ε) = 0, O2I2y(x, ε) = ε/x. (1.27)
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Therefore C1y(x, ε) = 1/(1 + x/ε), or u0(x) = 0, v0(X) = 1/(1 + X). Also

[C2 − C1]y(x, ε) =
ε

x + 2x3
− ε

x
, (1.28)

and therefore u1(x) = −2x/(1 + 2x2), v1(X) = 0. Thus we see by Theorem 1
with N = 2 that

y(x, ε) =
1

1 + x/ε
− 2εx

1 + 2x2
+ O(ε2), (1.29)

and this confirms (1.3).

1.4 The Proof

The validity of Theorem 1 is a direct consequence of the following more
fundamental result.

Lemma 1. If f(x,X) ∈ C0([0, 1]× [0,∞]), then f(x, x/ε) = φ(x, x/ε)+o(1),
where φ(x,X) = f(x,∞) + f(0, X) − f(0,∞), uniformly as ε → 0+ for
0 ≤ x ≤ 1.

Proof. Let η > 0 be given. Then there exists δ > 0 such that |f(x,X) −
f(0, X)| < η whenever (x, X) ∈ [0, δ] × [0,∞]. Therefore

|f(x, x/ε) − f(0, x/ε)| < η, |f(x,∞) − f(0,∞)| < η (1.30)

for all (x, ε) ∈ [0, δ]×(0,∞]. Similarly, there exists Δ > 0 such that |f(x, X)−
f(x,∞)| < η whenever (x, X) ∈ [0, 1] × [Δ,∞], and therefore

|f(x, x/ε) − f(x,∞)| < η, |f(0, x/ε) − f(0,∞)| < η (1.31)

for all (x, ε) ∈ [δ, 1]× (0, d], where d = δ/Δ. Together, (1.30) and (1.31) show
that |f(x, x/ε) − φ(x, x/ε)| < 2η whenever (x, ε) ∈ [0, 1] × (0, d].

Proof of Theorem 1. To prove Theorem 1, we will show that f(x, X) ∈
C2N ([0, 1] × [0,∞]) implies the slightly stronger statement

f(x, x/ε) =
N∑

n=0

εn[un(x) + vn(x/ε)] + o(εN ) (1.32)

uniformly as ε → 0+ for 0 ≤ x ≤ 1. By the lemma, we know this
is true for N = 0. Assume it is true for N = M > 0 and assume
f(x,X) ∈ C2(M+1)([0, 1] × [0,∞]). Then g(x,X) = X[f(x,X) − f(x,∞)]
is in C2M+1([0, 1] × [0,∞]), and hence h(x,X) ∈ C2M ([0, 1] × [0,∞]), where
h(x,X) = x−1[g(x,X) − g(0, X)]. Therefore
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h(x, x/ε) =
M∑

n=0

εn[ûn(x) + v̂n(x/ε)] + o(εM ) (1.33)

uniformly as ε → 0+ for 0 ≤ x ≤ 1, where

ûn(x) = x−n
[
h[0,n](x,∞) −

n−1∑
m=0

xmh[m,−n](0,∞)
]
, (1.34)

v̂m(X) = Xm
[
h[m,0](0, X) −

m∑
n=0

X−nh[m,−n](0,∞)
]
, (1.35)

in accordance with (1.19) and (1.20). But for ε > 0,

h(x, x/ε) = ε−1[f(x, x/ε) − φ(x, x/ε)], (1.36)

where φ(x,X) is the function defined in Lemma 1. Therefore, substituting
into (1.33),

f(x, x/ε) = φ(x, x/ε) + ε

M∑
n=0

εn[ûn(x) + v̂n(x/ε)] + o(εM+1). (1.37)

Finally, note that g[0,−n](x,∞) = f [0,−n−1](x,∞) and hence

h[0,−n](x,∞) = x−1[f [0,−n−1](x,∞) − f [0,−n−1](0,∞)]. (1.38)

Similarly,

h[m,0](0, X) = X[f [m+1,0](0, X) − f [m+1,0](0,∞)]. (1.39)

Thus we see ûn(x) = un+1(x) and v̂m(X) = vm+1(X), and therefore (1.37)
is the same as (1.32) with N = M + 1.

1.5 Computer Calculation

Calculating more than a few terms in the uniform expansion (1.21) for most
any y(x, ε) = f(x, x/ε) quickly becomes tedious work. One of our objectives
in this book is to encourage the use of computer algebra software to do cal-
culations like this for us. We will be doing this using the well-known product
called Maple. As our first example, starting on a blank Maple worksheet, for
the function y(x, ε) = ε/(ε+x+2x3) of Section 1.3, by entering the sequence
of commands

y := ε · (ε + x + 2x3)−1; N := 4;
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series(y, ε = 0, N);
ONy := convert(%, polynom);
series(subs(x = ε · X, y), ε = 0, N);
INy := convert(%, polynom);
series(subs(x = ε · X,ONy), ε = 0, N);
INONy := convert(%, polynom);
series(subs(X = ε−1 · x, INy), ε = 0, N + 1);
ONINy := convert(%, polynom);

we readily determine O4y(x, ε), I4y(x, ε) and two forms of O4I4y(x, ε) =
I4O4y(x, ε). Notice though that in the series command to determine ONINy
with N = 4 we had to ask for N +1 terms. This is because of the way series
deals with removable singularities. Other values of N may require making
other adjustments, as may other functions, y(x, ε).

Continuing on the same worksheet, if we now enter

for n from 0 to N − 1 do
expand(xn · coeff (ONINy, ε, n));
series(%, x = 0, n);
coeff (ONy, ε, n) − x−n · convert(%, polynom);
un := simplify(%);
end do;

we get, in addition to u0(x) = 0 and u1(x) = −2x/(1 + 2x2) as in Section
1.3, the new results

u2(x) =
4(1 + x2)
(1 + 2x2)2

, u3(x) =
8x(3 + 8x2 + 6x4)

(1 + 2x2)3
. (1.40)

The idea in this second step is to capture the sum in (1.19) from the coeffi-
cient of εn in ONINy(x, ε) as it appears in (1.16). We used Maple’s expand
command to convert xn times this coefficient into a polynomial and thus
avoid another removable singularity problem. By similar reasoning, looking
at (1.15) and the sum in (1.20), if we add

for m from 0 to N − 1 do
expand(X−m · coeff (INONy, ε, m));
series(%, X = ∞,m + 1);
coeff (INy, ε, m) − Xm · convert(%, polynom);
vm := simplify(%);
end do;

we immediately get

v0(X) =
1

1 + X
, v1(X) = 0, v2(X) = −2(3X + 2)

(1 + X)2
, v3(X) = 0. (1.41)
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As for the original problem of approximating the function F (ε) given by
(1.1), concluding this computation with

CNy := sum(εk · (uk + vk), k = 0, N − 1);
int(subs(X = ε−1 · x,CNy), x = 0..1) assuming ε > 0;
F := series(ε−1 ∗ %, ε = 0, N);

yields

F (ε) = ln (1/ε) − (1/2) ln 3 + aε − 6ε2 ln (1/ε) + bε2 + O(ε3), (1.42)

where a = 4
3 + 3

√
2

2 arctan
√

2 and b = 59
18 + 3 ln 3. Note that we had to ask

for 4 terms in the series command for F (ε) in order not to miss a possible
ε3 ln(1/ε) contribution.

1.6 Two Corollaries

Before turning to differential equation problems we have a pair of corollaries
to add to Theorem 1. It often happens that y(x, ε) = f(x, x/ε, ε) for 0 ≤ x ≤
1, 0 < ε ≤ εo, where f(x,X, ε) ∈ C∞([0, 1]× [0,∞]× [0, εo]). Then, of course,

f(x,X, ε) =
N−1∑
n=0

εnf [0,0,n](x,X, 0) + O(εN ) (1.43)

uniformly as ε → 0+ for all (x,X) ∈ [0, 1] × [0,∞], and therefore

y(x, ε) =
N−1∑
n=0

εnf [0,0,n](x, x/ε, 0) + O(εN ) (1.44)

uniformly for 0 ≤ x ≤ 1. Furthermore, we can apply Theorem 1 to each
f [0,0,n](x, x/ε, 0).

Corollary 1. If y(x, ε) = f(x, x/ε, ε) for all (x, ε) ∈ [0, 1] × (0, εo], where
f(x,X, ε) ∈ C∞([0, 1] × [0,∞] × [0, εo]) and εo > 0, then for any N ≥ 0,

y(x, ε) =
N−1∑
n=0

εn[un(x) + vn(x/ε)] + O(εN ) (1.45)

uniformly for 0 ≤ x ≤ 1 as ε → 0+, where un(x) ∈ C∞([0, 1]), vn(X) ∈
C∞([0,∞]), vn(∞) = 0, and, as in Theorem 1, the sum in (1.45) is the
combination CNy(x, ε) = [ON + IN − ONIN ]y(x, ε) of the outer and inner
expansions
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ONy(x, ε) =
N−1∑
n=0

εnyn(x), (1.46)

where yn(x) = y[0,n](x, 0), and

INy(x, ε) =
N−1∑
n=0

εnYn(x/ε), (1.47)

where, Yn(X) = Y [0,n](X, 0), Y (X, ε) = y(εX, ε). Also, for any M,N ≥ 1,
ONIMy(x, ε) = IMONy(x, ε).

Proof. From (1.44) and Theorem 1, it is easy to see (1.45) holds with

uk(x) =
k∑

n=0

x−n
(
g
[0,−n]
k−n (x,∞) −

n−1∑
m=0

g
[m,−n]
k−n (0,∞)xm

)
, (1.48)

vk(X) =
k∑

m=0

Xm
(
g
[m,0]
k−m(0, X) −

m∑
n=0

g
[m,−n]
k−m (0,∞)X−n

)
, (1.49)

where gk(x,X) = f [0,0,k](x, X, 0), and it is clear that uk(x) ∈ C∞([0, 1]),
vk(X) ∈ C∞([0,∞]) and vk(∞) = 0. For the (independent) determination
of these functions by outer and inner expansions, we defer to Exercise 1.3 at
the end of the chapter.

It often happens too that we have y(x, ε) = f(x, x/ε, ε) and f(x,X, ε) =
o(X−∞) as X → ∞. That is, f [0,−n,0](x,∞, ε) = 0 for all n ≥ 0, which means
ONy(x, ε) = 0 for all N ≥ 1. Also, additional parameters may be present and
of course we are not restricted to the interval 0 ≤ x ≤ 1. We will need the
following, for example, in which x is the additional parameter, in the next
chapter.

Corollary 2. If y(x, t, ε) = f(x, t, t/ε, ε) , where f(x, t, T, ε) ∈ C∞([0, xo] ×
[0, x] × [0,∞] × [0, εo]) for some εo, xo > 0, and if f [0,0,−n,0](x, t,∞, ε) = 0
for all n ≥ 0, then for any N ≥ 0,

y(x, t, ε) =
N∑

n=0

εnφ[0,0,n](x, t/ε, 0) + O(εN+1) (1.50)

uniformly for all (x, t) ∈ [0, xo] × [0, x] as ε → 0+, where φ(x, T, ε) =
f(x, εT, T, ε).
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1.7 Exercises

1.1. We noted in Section 1.2 that y(x, ε) = f(x, x/ε), where f(x,X) ∈
C∞([0, 1] × [0,∞]), implies y(x, ε) = ONy(x, ε) + O(εN ) uniformly on
[δ, 1] for any δ ∈ (0, 1). In light of Theorem 1 this also means [IN −
ONIN ]y(x, ε) = O(εN ) on [δ, 1]. Show directly from(1.14) and (1.15) that
in fact [IN − ONIN ]y(x, ε) = O(εN ) uniformly on [δ, c] for any c > δ > 0.

1.2. Show that Corollary 1 applies to

y(x, ε) =
ε + x2

ε + ε2 + x + 2x3
(1.51)

and that

O3I3y(x, ε) = x − (1 + 2x − 1/x)ε + (3 + 1/x − 1/x2)ε2. (1.52)

Note that this implies

u0(x) = y0(x), u1(x) = y1(x)− 1/x, u2(x) = y2(x)− 1/x + 1/x2, (1.53)

and

v0(X) = Y0(X), v1(X) = Y1(X)+1−X, v2(X) = Y2(X)−3+2X. (1.54)

Complete the calculation of un(x) and vn(X) for 0 ≤ n ≤ 2, and show that∫ 1

0

y(x, ε) dx = a+ε ln(1/ε)−bε+ε2 ln(1/ε)+cε2−4ε3 ln(1/ε)+O(ε3), (1.55)

where a = 1
4 ln 3, b = 1

6 + 1
2 ln 3 +

√
2

4 arctan
√

2, c = − 7
18 − 1

2 ln 3 +
5
√

2
4 arctan

√
2.

1.3. Complete the proof of Corollary 1 by considering

y1(x, ε) =
N−1∑
n=0

εnun(x), y2(x, ε) =
N−1∑
n=0

εnvn(x/ε) (1.56)

separately. Clearly, for example, INy2(x, ε) = y2(x, ε). Therefore OMy2(x, ε) =
OMINy2(x, ε). Also, INOMINy2(x, ε) = OMINy2(x, ε), and so on.

1.4. Let m be a positive integer, assume a, b > 0 and suppose

F (ν) = νm+1

∫ ν

0

tme−at2e−b(νt−t2) dt. (1.57)
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Show that for ν > 0,

F (ν) = ε−1

∫ 1

0

f(s, s/ε) ds, (1.58)

where ε = ν−2, f(s, S) = Sme−Su(s), u(s) = as + b(1− s). Since u(s) > 0 for
0 ≤ s ≤ 1, it follows, as in Corollary 2, that for any N ≥ 0,

f(s, s/ε) =
N−1∑
n=0

εnφ[0,n](s/ε, 0) + O(εN ) (1.59)

as ε → 0+, where φ(S, ε) = f(εS, S). Also,∫ ∞

1

φ[0,n](s/ε, 0) ds = o(ε∞). (1.60)

Show therefore that

F (ν) =
N−1∑
n=0

cnν−2n + O(ν−2N ) (1.61)

as ν → ∞, where

cn = (−1)n (m + 2n)!
n!

(a − b)n

bm+2n
. (1.62)

What if m is not an integer?

1.5. Consider the contour integral

F (ν) =
∫

C

e−νh(z)g(z) dz, (1.63)

where C is the straight line from the origin to a point zo = roe
iθo and g(z),

h(z) are analytic on C. Assume Re[h(z)] > 0 on C, except h[k](0) = 0 for
0 ≤ k ≤ m − 1 and θo is such that μ = Re[eimθoh[m](0)] > 0, where m ≥ 1.
Observe that these assumptions imply the real part of u(r) = r−mh(reiθ0)
exceeds zero for 0 ≤ r ≤ ro, and therefore

F (ν) =
∫ ro

0

f(r, r/ε) dr, (1.64)

where ε = ν−1/m and f(r,R) = g(reiθo)exp[−Rmu(r) + iθo], which is in
C∞([0, ro]× [0,∞]), so we can apply Theorem 1. Furthermore, as in Exercise
1.4, f [0,−n](r,∞) = 0 for all n ≥ 0, and therefore

f(r, r/ε) =
N∑

n=0

εnφ[0,n](r/ε, 0) + O(εN+1), (1.65)
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where φ(R, ε) = f(εR, R). Also as in Exercise 1.4, φ[0,n](R, 0) is bounded by
a polynomial times a decreasing exponential, in this case exp(−μRm), and
therefore ∫ ∞

ro

φ[0,n](r/ε, 0) dr = o(ε∞). (1.66)

Thus it follows from (1.64) that

F (ν) = ε

N−1∑
n=0

εn

∫ ∞

0

φ[0,n](R, 0) dR + O(εN+1). (1.67)

In other words, if ψ(Z, ε) = g(εZ)e−h(εZ)/εm

, then

F (ν) = ε

N−1∑
n=0

εn

∫ ∞eiθo

0

ψ[0,n](Z, 0) dZ + O(εN+1), (1.68)

and ψ[0,n](Z, 0) is a polynomial times e−h[m](0)Zm

.

1.6. Beginning with the Bessel function integral

Jν(ν) =
1

2πi

∫ ∞+iπ

∞−iπ

e−νh(z) dz, (1.69)

where h(z) = z−sinhz, show that if xo > 0, then∫ ∞±iπ

xo±iπ

e−νh(z) dz = o(ν−∞) (1.70)

as ν → ∞, and that therefore Jν(ν) is asymptotically equivalent to the sum of
two integrals of the form assumed in the previous exercise, one with θo = π/3,
the other with θo = −π/3, and both with m = 3. Show further that these
two integrals can be combined to yield

Jν(ν) = ε
N−1∑
n=0

εn

∫ ∞eiπ/3

∞e−iπ/3
ψ[0,n](Z, 0) dZ + O(εN+1), (1.71)

where ε = ν−1/3 and ψ(Z, ε) = (1/2πi)exp[−ε−3h(εZ)]. Note that ψ(Z, ε) is
an even function of ε, so half the terms in (1.71) equal zero. If we let

an =
1

2πi

∫ ∞eiπ/3

∞e−iπ/3
Zne

1
6 Z3

dZ, (1.72)

then a0 = 21/3Ai(0), a1 = −22/3Ai[1](0), a2 = 0, and an = −2(n − 2)an−3

for n ≥ 3. Use the Maple steps
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series(ε−3 · (sinh(εZ) − εZ), ε = 0, 40) :
series(e%, ε = 0, 40) : convert(%, polynom) :
w := simplify(% · exp(−1

6 · Z3)) :
P := subs(ε = 1, %) : N := degree(P ) :
a0 := A : a1 := B : a2 := 0 : w := A − 1 + w :
for n from 3 to N do
an := −2 · (n − 2) · an−3 : w := subs(Zn = an, w) :
end do: w := series(w, ε = 0, 40);

to determine the first 13 non-zero terms of (1.71).

1.7. Assume a(x, ε) ∈ C∞([0, 1] × [0, εo]). Show there exists b(x, ε) ∈
C∞([0, 1] × [0, εo]) and c(ε) ∈ C∞([0, εo]) such that, for ε > 0,

a(x, ε)
x + ε

= b(x, ε) +
c(ε)
x + ε

. (1.73)

Of course, this is trivial if a(x, ε) is a polynomial.

1.8. An alternate proof of Theorem 1 can be obtained by a variation of the
analysis in Section 2.1 of Part II of [3]. Note first that if 0 < ε1/2 ≤ x ≤ 1,
then ε/x ≤ ε1/2 and therefore, in view of (1.11), assuming y(x, ε) satisfies
the hypotheses of Theorem 1.1, y(x, ε) = O2Ny(x, ε) + O(εN ). Similarly,
INy(x, ε) = O2NINy(x, ε) + O(εN ) for 0 < ε1/2 ≤ x ≤ 1. Therefore y(x, ε) =
CNy(x, ε) + ANy(x, ε) + O(εN ) for 0 < ε1/2 ≤ x ≤ 1, where ANy(x, ε) =
[(O2N − ON ) − IN (O2N − ON )]y(x, ε). But a short calculation shows

ANy(x, ε) = xN
2N−1∑
n=N

(ε/x)nθn(x), (1.74)

where

θn(x) = x−N
[
f [0,−n](x,∞) −

N−1∑
m=0

xmf [m,−n](0,∞)
]
, (1.75)

and clearly θn(x) = O(1) for 0 ≤ x ≤ 1. Therefore ANy(x, ε) = O(εN )
for 0 < ε1/2 ≤ x ≤ 1, since, in this case, xN (ε/x)n ≤ εN for n ≥ N . An
analogous argument, beginning with y(x, ε) = I2Ny(x, ε) + O(εN ), shows
y(x, ε) = CNy(x, ε) + O(εN ) as ε → 0+ when 0 ≤ x ≤ ε1/2.



Chapter 2

First Order Differential Equations

2.1 Problem A

The plan for this book is to apply the theory developed in Chapter 1 to a
sequence of more or less increasingly complex differential equation problems.
We begin with

εy′ + a(x, ε)y = b(x, ε), (2.1)

where a(x, ε), b(x, ε) ∈ C∞([0, 1]×[0, εo]) for some εo > 0, and a(x, ε) > 0. We
also assume y(0, ε) = α(ε) ∈ C∞([0, εo]). The problem is to asymptotically
approximate y(x, ε) uniformly on 0 ≤ x ≤ 1 as ε → 0+. If we put z(x, ε) =
y(x, ε) − α(ε), then

z(x, ε) = ε−1

∫ x

0

b̂(x − t, ε)e−[k(x,ε)−k(x−t,ε)]/ε dt, (2.2)

where b̂(x, ε) = b(x, ε) − α(ε)a(x, ε) and

k(x, ε) =
∫ x

0

a(t, ε) dt. (2.3)

If we let u(x, t, ε) = t−1[k(x, ε) − k(x − t, ε)], then u(x, t, ε) > 0 on [0, 1] ×
[0, x]× [0, εo]. In particular, u(x, 0, ε) = a(x, ε) > 0. Thus we can rewrite (2.2)
as

z(x, ε) = ε−1

∫ x

0

f(x, t, t/ε, ε) dt, (2.4)

where
f(x, t, T, ε) = b̂(x − t, ε)e−Tu(x,t,ε), (2.5)

and we can apply Corollary 2. In terms of φ(x, T, ε) = f(x, εT, T, ε), it follows
that

z(x, ε) =
N∑

n=0

εnΦn(x, x/ε) + O(εN ), (2.6)

© Springer Science+Business Media, LLC 2011 
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where

Φn(x,X) =
∫ X

0

φ[0,0,n](x, T, 0) dT. (2.7)

Furthermore,
φ[0,0,n](x, T, 0) = pn(x, T )e−a(x,0)T , (2.8)

where pn(x, T ) is a polynomial in T , and therefore Φn(x,X) ∈ C∞([0, 1] ×
[0,∞]). Hence, in accordance with Corollary 1, applied to the sum in (2.6),
we see y(x, ε) = z(x, ε) + α(ε) has a uniformly valid asymptotic expansion of
the form

y(x, ε) =
N−1∑
n=0

εn[un(x) + vn(x/ε)] + O(εN ), (2.9)

where un(x) ∈ C∞([0, 1]), vn(X) ∈ C∞([0,∞]), vn(∞) = 0, and these terms
can be found by computing inner and outer expansions.

From (2.6), we have O1z(x, ε) = Φ0(x,∞) and since p0(x, T ) = b̂(x, 0), it
follows that

O1z(x, ε) = b̂(x, 0)/a(x, 0). (2.10)

Similarly,

I1z(x, ε) = Φ0(0, x/ε) = [b̂(0, 0)/a(0, 0)](1 − e−a(0,0)x/ε) (2.11)

and, from either (2.10) or (2.11),

O1I1z(x, ε) = I1O1z(x, ε) = b̂(0, 0)/a(0, 0). (2.12)

Also C1y(x, ε) = C1z(x, ε) + α(0). Hence, the first terms of (2.9) are

u0(x) = b(x, 0)/a(x, 0), v0(X) = [α(0) − b(0, 0)/a(0, 0)]e−a(0,0)X . (2.13)

Of course, it is much easier to calculate the inner and outer expansions
for (2.9) directly from the differential equation (2.1). For the N -term outer
expansion,

ONy(x, ε) =
N−1∑
n=0

εnyn(x), (2.14)

(2.1) implies

y′
n−1(x) +

n∑
k=0

an−k(x)yk(x) = bn(x), (2.15)

where an(x) = a[0,n](x, 0), bn(x) = b[0,n](x, 0). Similarly, for the N -term inner
expansion,

INy(x, ε) =
N−1∑
n=0

εnYn(x/ε), (2.16)
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if we put A(X, ε) = a(εX, ε), B(X, ε) = b(εX, ε), in addition to Y (X, ε) =
y(εX, ε), then (2.1) becomes

Y ′ + A(X, ε)Y = B(X, ε). (2.17)

Therefore,

Y ′
n(X) +

n∑
k=0

An−k(X)Yk(X) = Bn(X), (2.18)

where An(X) = A[0,n](X, 0), Bn(X) = B[0,n](X, 0). Also, y(0, ε) = α(ε) im-
plies Yn(0) = α[n](0). For the actual calculations we offer our first Maple
program.

ProbA := proc (a, b, α, N)
ONy := sum(εn · yn, n = 0..N − 1);
ONdy := sum(εn · dyn, n = 0..N − 1);
ONeq := series(ε · ONdy + a · ONy − b, ε = 0, N);
for k from 0 to N − 1 do
temp := coeff (ONeq, ε, k); yk := solve(temp = 0, yk);
dyk := diff (yk, x); ONeq := subs(yk = yk, dyk = dyk,ONeq);
ONy := subs(yk = yk,ONy); print(uk = yk);
end do;
A := subs(x = ε · X, a); B := subs(x = ε · X, b);
INy := sum(εn · Yn, n = 0..N − 1);
INdy := sum(εn · dYn, n = 0..N − 1);
INde := series(INdy + A ∗ INy − B, ε = 0, N);
Nα := series(α, ε = 0, N);
for k from 0 to N − 1 do
temp := coeff (INde, ε, k);
de := subs(Yk = z(X), dYk = diff (z(X), X), temp) = 0;
dsolve({de, z(0) = coeff (Nα, ε, k)});
Y k := rhs(%); dY k := diff (Y k,X);
INde := subs(Yk = Y k, dYk = dY k, INde); Yk := Y k;
end do;
INONy := series(subs(x = ε · X, ONy), ε = 0, N);
for k from 0 to N − 1 do
vk := Yk − coeff (INONy, ε, k);
print(vk = simplify(expand(vk)));
end do;
end proc:

This program solves for the N -term outer expansion of y(x, ε) using (2.15)
and then computes the N -term inner expansion using (2.18). At the end, the
program computes INONy(x, ε). Normally there would be the matter of sep-
arating INONy(x, ε) into two parts to form the functions un(x) and vn(X).
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In this problem, however, it is clear from (2.15) that ONy(x, ε) is continuous
at x = 0 and therefore un(x) = yn(x). This also means vn(x/ε) is the coeffi-
cient of εn in [IN − INON ]y(x, ε). As an example,

a := 2 + x + ε; b := (2 + x)−1; α := ε; ProbA(a, b, α, 2);

yields

u0(x) =
1

(2 + x)2
, u1(x) =

−x

(2 + x)4
, (2.19)

and

v0(X) = −1
4
e−2X , v1(X) =

1
8
(8 + 2X + X2)e−2X . (2.20)

2.2 Problem B

For our second differential equation we take

ε2y′ + xa(x, ε)y = εb(x, ε). (2.21)

Again we assume a(x, ε), b(x, ε) ∈ C∞([0, 1]×[0, εo]) for some εo > 0. We also
assume a(x, ε) > 0 on [0, 1]×[0, εo], y(0, ε) = εα(ε), where α(ε) ∈ C∞([0, εo]),
and, without loss of generality, we assume a(0, 0) = 1. The essential difference
here from Problem A is the factor of x multiplying a(x, ε).

In place of (2.3), we now have

k(x, ε) =
∫ x

0

ta(t, ε) dt (2.22)

and therefore, as t → 0+,

k(x − t, 0) = k(x, 0) − txa(x, 0) +
1
2
t2[a(x, 0) + xa[1,0](x, 0)] + O(t3). (2.23)

If we put

u(x, t, ε) = t−2[k(x, ε) − k(x − t, ε)] − (tx − t2)a(x, 0), (2.24)

then u(0, 0, 0) = 1/2 and therefore u(x, t, ε) > 0 on [0, xo] × [0, x] × [0, εo]
for some xo > 0, and possibly a smaller εo > 0. Thus if we let z(x, ε) =
y(x, ε) − εα(ε) and b̂(x, ε) = b(x, ε) − xα(ε)a(x, ε), then
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z(x, ε) = ε−1

∫ x

0

f(x, t, t/ε, ε)e−t(x−t)a(x,0)/ε2
dt, (2.25)

where,
f(x, t, T, ε) = b̂(x − t, ε)e−T 2u(x,t,ε), (2.26)

and we have f(x, t, T, ε) ∈ C∞([0, xo] × [0, x] × [0,∞] × [0, εo]). Also

0 < e−t(x−t)a(x,0)/ε2 ≤ 1 (2.27)

for all (x, t, ε) ∈ [0, 1] × [0, x] × (0, εo]. Hence, applying Corollary 2 with
φ(x, T, ε) = f(x, εT, T, ε), from (2.25) we get

z(x, ε) =
N∑

n=0

εnΦn(x, x/ε) + O(εN ) (2.28)

uniformly as ε → 0+ for 0 ≤ x ≤ xo, where

Φn(x,X) =
∫ X

0

φ[0,0,n](x, T, 0)e−T (X−T )a(x,0) dT. (2.29)

Also,
φ[0,0,n](x, T, 0) = pn(x, T )e−T 2u(x,0,0), (2.30)

where pn(x, T ) is a polynomial in T .
From Exercise 1.4, it is clear that

F (x,X) =
∫ X

0

Tme−T 2u(x,0,0)e−T (X−T )a(x,0) dT, (2.31)

for any integer m ≥ 0, is in C∞([0, xo] × [0,∞]). Therefore Φn(x,X) ∈
C∞([0, xo] × [0,∞]) and thus from (2.28), by Corollary 1, we know y(x, ε)
has a uniformly valid expansion, at least for 0 ≤ x ≤ xo, of the form

y(x, ε) =
N−1∑
n=0

εn[un(x) + vn(x/ε)] + O(εN ). (2.32)

But also, from Problem A, we know that y(x, ε) = ONy(x, ε) + O(εN ) uni-
formly as ε → 0+ for xo ≤ x ≤ 1, since xa(x, ε) > 0 for xo ≤ x ≤ 1. Further-
more, by Exercise 1.1, we know [IN −ONIN ]y(x, ε) = O(εN ) for xo ≤ x ≤ 1.
Hence, in conclusion, y(x, ε) has a uniformly valid expansion of the form
(2.32) as ε → 0+ on the full interval 0 ≤ x ≤ 1, where un(x) ∈ C∞([0, 1]),
vn(X) ∈ C∞([0,∞]), vn(∞) = 0, and these functions can be determined by
computing the corresponding outer and inner expansions for y(x, ε) directly
from the differential equation (2.21).
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The inner expansion calculations for Problem B, if we just ask Maple to
solve the associated sequence of differential equations, quickly gets bogged
down with iterated error function integrals, so we have to help. It turns out
that at each stage the equation to solve has the form

Y ′ + XY = ρ(X) + σ(X)P (X) + τ(X)e−
1
2 X2

, (2.33)

where ρ(X), σ(X), τ(X) are polynomials and

P (X) = e−
1
2 X2

∫ X

0

e
1
2 T 2

dT. (2.34)

The solution to this equation has the same form as its right hand side. That
is,

Y (X) = p(X) + q(X)P (X) + r(X)e−
1
2 X2

, (2.35)

where p(X), q(X), r(X) are polynomials. Indeed, if we substitute (2.35) into
(2.33), we find

p′ + q + Xp = ρ(X), q′ = σ(X), r′ = τ(X). (2.36)

Therefore

q(X) = q0 +
∫ X

0

σ(T ) dT, r(X) = r0 +
∫ X

0

τ(T ) dT, (2.37)

where q0 = q(0), r0 = r(0) have yet to be determined, and if d is the degree
of s(X) = ρ(X) − q(X), then, to satisfy (2.36a), the degree of p(X) must be
d − 1. Hence,

p(X) =
d−1∑
n=0

pnXn, s(X) =
d∑

n=0

snXn (2.38)

and (2.36a), together with pd = pd+1 = 0, implies

pd−k−1 = sd−k − (d − k + 1)pd−k+1 (2.39)

for 0 ≤ k ≤ d−1. Also p1 = s0 so q0 = ρ(0)−p1 and finally, Y (0) = p0+r0 de-
termines r0. This is all incorporated into our Maple program for this problem.

ProbB := proc (a, b, α, N)
ONy := sum(εn · yn, n = 0..N − 1);
ONdy := sum(εn · dyn, n = 0..N − 1);
ONeq := series(ε2 · ONdy + x · a · ONy − ε · b, ε = 0, N);
for k from 0 to N − 1 do
temp := coeff (ONeq, ε, k); yk := solve(temp = 0, yk);
dyk := diff (yk, x); ONeq := subs(yk = yk, dyk = dyk,ONeq);
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ONy := subs(yk = yk,ONy); yk := yk;
end do;
A := subs(x = ε · X, a); B := subs(x = ε · X, b);
INy := sum(εn · Yn, n = 0..N − 1);
Nεα := series(ε · α, ε = 0, N);
rths := series(B · I − X · A · INy + X · INy, ε = 0, N + 1);
for k from 0 to N − 1 do
temp := coeff (rths, ε, k);
qcut := int(subs(X = T, coeff (temp, P )), T = 0..X);
s := coeff (temp, I) − qcut;
if s = 0 then d := 0; else d := degree(s); end if ;
pd := 0; pd+1 := 0;
for j from 0 to d − 1 do
pd−j−1 := coeff (s,X, d − j) − (d − j + 1) · pd−j+1;
end do;
q := qcut + subs(X = 0, coeff (temp, I)) − p1;
r := coeff (Nεα, ε, k) − p0 + int(subs(X = T, coeff (temp, E)), T = 0..X);
p := sum(pn · Xn, n = 0..d − 1);
Y k := p · I + q · P + r · E;
rths := subs(Yk = Y k, rths); Yk := Y k;
end do;
series(subs(x = ε ·X, ONy), ε = 0, N); INONy := convert(%, polynom);
vpart := sum(Xn · coeff (INONy, X, n), n = 0..N);
upart := subs(X = ε−1 · x, INONy − vpart);
for k from 0 to N − 1 do
uk := yk − coeff (upart, ε, k);
print(uk = simplify(uk)); uk := uk;
end do;
for k from 0 to N − 1 do
vk := Yk − I · coeff (vpart, ε, k);
print(vk = simplify(coeff (vk, I) · I + coeff (vk, P ) · P + coeff (vk,E) · E);
end do;
end proc:

In this program, the letters I, P , and E are used to denote 1, P (X), and
exp(−1

2X2), respectively. Also, we have used the fact that INONy(x, ε) is at
most O(XN−1) as X → ∞ to split it into the two parts necessary to form
un(x) and vn(X) for n = 0 to N − 1.

As an example, if we set

a(x, ε) = 1 + cx2, b(x, ε) = 1, α(ε) = 0, (2.40)

then ProbB(a, b, α, 4) yields

y(x, ε) = P (x/ε) − εcx

1 + cx2
+ ε2v2(x/ε) + ε3u3(x) + O(ε4) (2.41)
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with

v2(X) =
c

4
[X + X3 + (3 − X4)P (X)], u3(x) = −c2x(3 + cx2)

(1 + cx2)3
. (2.42)

As another, if

a(x, ε) = 1 + gx, b(x, ε) = h + kx, α(ε) = 0, (2.43)

then

u0(x) = 0, u1(x) =
k − gh

1 + gx
, v0(X) = hP (X), (2.44)

and

v1(X) =
1
3
gh(1 + X2) − 1

3
ghX3P (X) +

1
3
(2gh − 3k)e−

1
2 X2

. (2.45)

For

a(x, ε) = cos(x) + x, b(x, ε) = cos(x), α(ε) = 1, (2.46)

a graph of
C2y(x, ε) = P (x/ε) + ε[u1(x) + v1(x/ε)] (2.47)

when ε = 0.2 is shown in Figure 2.1, along with a portion of O2y(x, ε) and
Maple’s numerical solution of the differential equation. In this last example,

0.40.2 1.00.0

0.6

0.6

0.4

0.2

0.8

0.8

Fig. 2.1 Numerical solution of (2.21) and asymptotic approximations of the solution when
a(x, ε) = cos(x) + x, b(x, ε) = cos(x), y(0, ε) = 1 and ε = 0.2.
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u1(x) =
−1

cos(x) + x
, v1(X) =

1
3
(1 + X2) − 1

3
X3P (X) +

5
3
e−

1
2 X2

. (2.48)

2.3 Exercises

2.1. Let y(x, ε) be the solution to

εy′ + x(1 + x + ε)y = 2 + x2, 1 ≤ x ≤ 2, (2.49)

satisfying y(1, ε) = 1 + ε. Use ProbA to show

y(x, ε) =
2 + x2

x(1 + x)
+ e−2(x−1)/ε + ε[u1(x) + v1((x − 1)/ε)] + O(ε2) (2.50)

for 1 ≤ x ≤ 2, where

u1(x) =
−2 − 4x + 3x2 + 2x3 + x4 + x5

x3(1 + x)3
, (2.51)

v1(X) = −1
2
(1 + 2X + 3X2)e−2X . (2.52)

2.2. Note that An(X) and Bn(X) in (2.18) are polynomials and that therefore
Yn(X) = pn(X) + qn(X)exp[−a(0, 0)X], where pn(X), qn(X) are polynomi-
als. Therefore vn(X) = qn(X)exp[−a(0, 0)X], since vn(∞) = 0. Furthermore,

v′n(X) +
n∑

k=0

An−k(X)vk(X) = 0, (2.53)

and vn(0) = α[n](0) − un(0). Write a new, shorter Maple program for com-
puting the terms of (2.9).

2.3. Show that we could add ε2 times c(x, ε) ∈ C∞([0, 1]× [0, εo]), to xa(x, ε)
in (2.21) without upsetting the basic analysis, and modify the program ProbB
appropriately to include it.

2.4. Let y(x, ε) be the solution to

ε2y′ + x(1 + x + ε)y = εx(2 + x2), 0 ≤ x ≤ 1, (2.54)

satisfying y(0, ε) = 1. Use ProbB to show

y(x, ε) =
2 + x2

1 + x
− e−

1
2 (x/ε)2 + ε[u1(x) + v1(x/ε)] + O(ε2), (2.55)
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where

u1(x) = − 2 + x2

(1 + x)2
, v1(X) = 2P (X) +

1
6
(12 + 3X2 + 2X3)e−

1
2 X2

. (2.56)

2.5. Suppose s(x) ∈ C∞([0, 1]), s′(x) > 0 and g(x, ε) ∈ C∞([0, 1] × [0, εo])
for some εo > 0. Let

F (x, ε) = ε−1

∫ x

0

e−[s(x)−s(t)]/εg(x, t) dt, (2.57)

G(x, ε) = ε−1

∫ 1

x

e[s(x)−s(t)]/εg(x, ε) dt. (2.58)

From the analysis at the beginning of Section 2.1, we know F (x, ε) has a
uniformly valid expansion of the form

F (x, ε) =
N−1∑
n=0

εn[un(x) + vn(x/ε)] + O(εN ) (2.59)

as ε → 0+, where un(x) ∈ C∞([0, 1]), vn(X) ∈ C∞([0,∞]) and, as in Exercise
2.2, vn(X) = o(X−∞) as X → ∞. Show that G(x, ε) has a uniformly valid
expansion of the form

G(x, ε) =
N−1∑
n=0

εn[un(x) + wn((1 − x)/ε)] (2.60)

as ε → 0+, where un(x) ∈ C∞([0, 1]), wn(X) ∈ C∞([0,∞]) and wn(X) =
o(X−∞) as X → ∞. In particular,

u0(x) = g(x, 0)/s′(x), w0(X) = e−s′(1)X . (2.61)

2.6. Suppose g(x, t), h(x, t) ∈ C∞([0, 1] × [0, x]), h(x, t) > 0 for 0 < t ≤
x ≤ 1, h(x, 0) = 0 for 0 ≤ x ≤ 1, and h[0,1](x, 0) > 0 for 0 < x ≤ 1 but
h[0,1](0, 0) = 0. Let

F (x, ν) =
∫ x

0

e−νh(x,t)g(x, t) dt. (2.62)

We know that for x > 0,

F (x, ν) = ν−1[g(x, 0)/h[0,1](x, 0)] + O(ν−1). (2.63)
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For an expansion of F (x, ν) that is uniformly valid for 0 ≤ x ≤ 1, note first
that as (x, t) → (0, 0),

h(x, t) = h11xt + h02t
2 + O((x2 + t2)3/2), (2.64)

where we have begun using hij = h[i,j](0, 0), gij = g[i,j](0, 0), so it must be
that h11x + h02t ≥ 0 for 0 < t ≤ x ≤ 1.

Assume h11 > 0 and h02 > 0. If we let

u(x, t) = t−2[h(x, t) − th[0,1](x, 0)], a(x) = x−1h[0,1](x, 0), (2.65)

then u(0, 0) > 0 and a(0) > 0, and hence there exists xo > 0 such that
u(x, t) > 0 on [0, xo] × [0, x] and a(x) > 0 on [0, xo]. Therefore

F (x, ν) =
∫ x

0

f(x, t, t/ε)e−νxta(x) dt, (2.66)

where ε = ν−1/2,
f(x, t, T ) = e−T 2u(x,t)g(x, t) (2.67)

and f(x, t, T ) ∈ C∞([0, xo] × [0, x] × [0,∞]). In addition, 0 < e−νxta(x) ≤ 1
and thus, applying Corollary 2, with φ(x, T, ε) = f(x, εT, T ), we get

F (x, ν) =
N−1∑
n=1

εnΦn(x, x/ε) + O(εN ) (2.68)

uniformly as ε → 0+ for 0 ≤ x ≤ xo, where

Φn(x,X) =
∫ X

0

φ[0,0,n](x, T, 0)e−XTa(x) dT. (2.69)

Show that Φn(x, X) ∈ C∞([0, xo]× [0,∞]), so we can apply Theorem 1 to
each term of (2.68), and thereby determine

F (x, ν) = εv1(x/ε) + ε2[u2(x) + v2(x/ε)] + O(ε3) (2.70)

uniformly as ε → 0+ for 0 ≤ x ≤ xo, where

v1(X) = g00

∫ X

0

e−h02T 2−h11XT dT, (2.71)

u2(x) =
g(x, 0)

h[0,1](x, 0)
− g00

h11x
, (2.72)

and

v2(X) =
∫ X

0

p2(X, T )e−h02T 2−h11XT dT, (2.73)
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where

p2(X, T ) = g10 + (g01 − g00h21X
2)T − g00h12XT 2 − g00h03T

3. (2.74)

Note, furthermore, that for x > 0 the right side of (2.70) is asymptotically
equal to ε2[g(x, 0)/h[0,1](x, 0)] + O(ε3), the beginning of its outer expansion,
and therefore, in view of (2.63), equation (2.70) actually holds uniformly for
0 ≤ x ≤ 1.

The result (2.32) for the solution to Problem B is an example of an ex-
pansion for a case of F (x, ν) with h11 > 0 and h02 < 0.



Chapter 3

Second Order Differential Equations

3.1 Problem C

We begin this chapter with the classic singular perturbation problem

εy′′ + a(x, ε)y′ + b(x, ε)y = c(x, ε), (3.1)

where a(x, ε) > 0, subject to the boundary conditions y(0, ε) = α(ε) and
y(1, ε) = β(ε). It will be assumed that a(x, ε), b(x, ε), c(x, ε) ∈ C∞([0, 1] ×
[0, εo]) and α(ε), β(ε) ∈ C∞([0, εo]) for some εo > 0.

At first we will ignore the condition y(1, ε) = β(ε) and instead treat (3.1)
as an initial value problem with y[1,0](0, ε) = γ(ε)/ε presumed given, where
γ(ε) ∈ C∞([0, εo]), in addition to y(0, ε) = α(ε). From our Problem A analysis
it is clear immediately that in the special case b(x, ε) = a[1,0](x, ε) the solution
to this initial value problem has the asymptotic form

y(x, ε) =
N−1∑
n=0

εn[un(x) + vn(x/ε)] + εNRN (x, ε), (3.2)

where un(x) ∈ C∞([0, 1]), vn(X) ∈ C∞([0,∞]), vn(X) = o(X−∞) as X → ∞
and RN (x, ε) = O(1) uniformly as ε → 0+ for 0 ≤ x ≤ 1. We are going to
prove that in fact this is true in general. First we will prove it for N = 0.

If we let g(x, ε) = a[1,0](x, ε) − b(x, ε), then

εy′ + a(x, ε)y = f(x, ε) +
∫ x

0

g(t, ε)y(t, ε) dt, (3.3)

where
f(x, ε) = γ(ε) + a(0, ε)α(ε) +

∫ x

0

c(t, ε) dt. (3.4)

Therefore, introducing

© Springer Science+Business Media, LLC 2011 
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k(x, ε) =
∫ x

0

a(t, ε) dt, (3.5)

as in Problem A, we have, after a reversal of integration order, the equivalent
integral equation

y(x, ε) = φ(x, ε) +
∫ x

0

K(x, t, ε)y(t, ε) dt, (3.6)

where
φ(x, ε) = α(ε) + ε−1

∫ x

0

e−[k(x,ε)−k(t,ε)]/εf(t, ε) dt (3.7)

and
K(x, t, ε) = ε−1g(t, ε)

∫ x

t

e−[k(x,ε)−k(s,ε)]/ε ds. (3.8)

Again as in Problem A, we know by Corollary 2 that

ε−1

∫ x

0

e−[k(x,ε)−k(t,ε)]/ε dt = O(1) (3.9)

uniformly as ε → 0+ for 0 ≤ x ≤ 1. Therefore, since α(ε) = O(1) and f(x, ε)
is uniformly O(1) as ε → 0+ for 0 ≤ x ≤ 1, there exists M > 0 such that
|φ(x, ε)| ≤ M for all (x, ε) ∈ [0, 1] × (0, εo]. Similarly, |K(x, t, ε)| ≤ M for
all (x, t, ε) ∈ [0, 1] × [0, x] × (0, εo]. Hence, by a simple Gronwall argument,
y(x, ε) is uniformly O(1) as ε → 0+ for 0 ≤ x ≤ 1. Indeed, for all (x, ε) ∈
[0, 1] × (0, εo], we have

|y(x, ε)| ≤ ψ(x, ε) = M + M

∫ x

0

|y(t, ε)| dt, (3.10)

so ψ[1,0](x, ε) ≤ Mψ(x, ε) and therefore e−Mxψ(x, ε) ≤ ψ(0, ε) = M , or
|y(x, ε)| ≤ MeMx ≤ MeM .

It is easy to see what happens if we substitute (3.2) into (3.1). Let
an(x) = a[0,n](x, 0), bn(x) = b[0,n](x, 0) and cn(x) = c[0,n](x, 0). Also
let A(X, ε) = a(εX, ε), B(X, ε) = b(εX, ε), An(X) = A[0,n](X, 0) and
Bn(X) = B[0,n](X, 0). Note, for example, that

a(x, ε)
N−1∑
n=0

εnu′
n(x) =

N−1∑
n=0

εn
n∑

k=0

ak(x)u′
n−k(x) + O(εN ) (3.11)

uniformly as ε → 0+ for 0 ≤ x ≤ 1. Similarly, since we are expecting vn(X) =
o(X−∞) as X → ∞, Corollary 2 implies

a(x, ε)
N∑

n=0

εnv′
n(x/ε) =

N∑
n=0

εn
n∑

k=0

Ak(x/ε)v′n−k(x/ε) + O(εN+1) (3.12)
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uniformly as ε → 0+ for 0 ≤ x ≤ 1. Hence if we put

u′′
n−1(x) +

n∑
k=0

ak(x)u′
n−k(x) +

n∑
k=0

bk(x)un−k(x) = cn(x) (3.13)

for 0 ≤ n ≤ N − 1 and

v′′n(X) +
n∑

k=0

Ak(X)v′
n−k(X) +

n−1∑
k=0

Bk(X)vn−1−k(X) = 0, (3.14)

for 0 ≤ n ≤ N , then (3.2) implies

εr′′N + a(x, ε)r′N + b(x, ε)rN = θN (x, ε), (3.15)

where rN (x, ε) = RN (x, ε) − vN (x/ε) and θN (x, ε) is uniformly O(1) as ε →
0+ for 0 ≤ x ≤ 1.

To satisfy y(0, ε) = α(ε) we require, according to (3.2), un(0)+vn(0) = αn,
where αn = α[n](0), and this implies rN (0, ε) = O(1). Also y[1,0](0, ε) =
ε−1γ(ε) means u′

n−1(0) + v′
n(0) = γn, where γn = γ[n](0), so r

[1,0]
N (0, ε) =

O(1). Therefore, just as y(x, ε) = O(1), it follows that rN (x, ε) = O(1) uni-
formly as ε → 0+ for 0 ≤ x ≤ 1. To complete the proof that the asymptotic
solution of the initial value problem for (3.1) has the stipulated form (3.2),
we need to confirm that vn(X) = o(X−∞) as X → 0+. But this follows
immediately from (3.14) once we assert vn(∞) = 0.

Note that to calculate the terms of (3.2) we have to alternate back and
forth between (3.13) and (3.14), starting with (3.14), applying v′n(0) =
γn − u′

n−1(0), vn(∞) = 0, first with n = 0, then going to (3.13) with
un(0) = αn − vn(0), thereby determining v′

1(0) = γ1 − u′
0(0), and so on. For

the boundary value problem, on the other hand, to satisfy y(1, ε) = β(ε),
note that (3.2) implies un(1) = β[n](0), so un(x) for 0 ≤ n ≤ N − 1
can be determined separately. Then vn(X) for 0 ≤ n ≤ N − 1 follows
from (3.14) using vn(0) = αn − un(0), vn(∞) = 0. The fact that, in-
deed, the boundary value problem for (3.1) has a solution of the form (3.2)
is confirmed by noting that the solution to the initial value problem has
the form y(x, ε) = w(x, ε) + γ(ε)z(x, ε), where w(x, ε) is the solution to
(3.1) satisfying w(0, ε) = α(ε), w′(0, ε) = 0 and z(x, ε) is the solution to
εz′′ + a(x, ε)z′ + b(x, ε)z = 0 satisfying z(0, ε) = 0, z′(0, ε) = 1/ε. In partic-
ular, therefore, z(1, 0) = [1/a0(0)] exp

∫ 1

0
[−b0(x)/a0(x)] dx, which is positive,

so we can assume εo is such that z(1, ε) > 0 on [0, εo], and thus the boundary
value problem for (3.1) is equivalent to the initial value problem defined by
taking γ(ε) = [β(ε) − w(1, ε)]/z(1, ε). Note also that if, for the boundary
value problem, we choose α(ε) such that αn = un(0), then vn(X) = 0. In
other words, the N-term outer expansion,
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ONy(x, ε) =
N−1∑
n=0

εnun(x) (3.16)

is, by itself, the first N terms of a uniformly valid asymptotic expansion of a
solution to (3.1).

Other strategies for calculating the terms of (3.2) are presented in the ex-
ercises. Below is a program for solving the boundary value problem based on
the above strategy.

ProbC := proc(a, b, c, α, β, N)
Nu := sum(εn · un, n = 0..N − 1); Ndu := sum(εn · dun, n = 0..N − 1);
Nddu := sum(εn · ddun, n = 0..N − 1);
Nude := series(ε · Nddu + a · Ndu + b · Nu − c, ε = 0, N);
Nα := series(α, ε, 0, N); Nβ := series(β, ε = 0, N);
for k from 0 to N − 1 do
temp := coeff (Nude, ε, k);
de := subs(uk = z(x), duk = diff (z(x), x), dduk = diff (z(x), x, x), temp);
bc := z(1) = coeff (Nβ, ε, k);
dsolve({de, bc}); uk := rhs(%); duk := diff (uk, x); dduk := diff (duk, x);
Nude := subs(uk = uk, duk = duk, dduk = dduk, Nude);
print(uk = simplify(uk)); uk := uk;
end do;
A := subs(x = ε · X, a); B := subs(x = ε · X, b);
Nv := sum(εn · vn, n = 0..N − 1); Ndv := sum(εn · dvn, n = 0..N − 1);
Nddv := sum(εn · ddvn, n = 0..N − 1);
Nvde := series(Nddv + A · Ndv + ε · B · Nv, ε = 0, N);
for k from 0 to N − 1 do
temp := coeff (Nvde, ε, k);
de := subs(vk = z(X), dvk = diff (z(X), X), ddvk = diff (z(X), X,X), temp);
bc := z(0) = coeff (Nα, ε, k) − subs(x = 0, uk), z(∞) = 0;
dsolve({de, bc}); vk := rhs(%); dvk := diff (vk,X); ddvk := diff (dvk,X);
Nvde := subs(vk = vk, dvk = dvk, ddvk = ddvk,Nvde);
print(vk = simplify(vk));
end do;
end proc:

3.2 Problem D

The problem for this section is

ε2y′′ + ε2a(x, ε)y′ − b(x, ε)y = c(x, ε) (3.17)
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with y(0, ε) = α(ε), y(1, ε) = β(ε). As usual, a(x, ε), b(x, ε), c(x, ε) ∈
C∞(([0, 1] × [0, εo]) and α(ε), β(ε) ∈ C∞([0, εo]) for some εo > 0. In ad-
dition, in this problem we assume b(x, ε) > 0.

For the corresponding homogeneous differential equation, c(x, ε) = 0, if
we put

y(x, ε) = es(x)/εz(x, ε) (3.18)

and choose [s′(x)]2 = b(x, 0), then

εz′′ + â(x, ε)z′ + b̂(x, ε)z = 0, (3.19)

where â(x, ε), b̂(x, ε) ∈ C∞([0, 1] × [0, εo]) and, in particular,

â(x, ε) = 2s′(x) + εa(x, ε). (3.20)

If we take s′(x) to be the positive square root of b(x, 0), then (3.19) is a
case of Problem C and, as noted at the end of Section 3.1, then (3.19) has a
solution with a uniformly valid expansion as ε → 0+ of the form

z(x, ε) =
N−1∑
n=0

εnzn(x) + O(εN ), (3.21)

where zn(x) ∈ C∞([0, 1]). If we also require z(0, 0) = 1, then z(0, ε) > 0 for
ε > 0 sufficiently small.

Actually, a solution to (3.19) of the form (3.21) also exists if s′(x) =
−[b(x, 0)]1/2. Indeed, in this case, simply replacing x by 1− x changes (3.19)
into another case of Problem C. Hence, to summarize, if we let

s(x) =
∫ x

0

[b(t, 0)]1/2 dt, (3.22)

there exists a pair of linearly independent solutions

y
(1)
h (x, ε) = e−s(x)/εz(1)(x, ε), (3.23)

y
(2)
h (x, ε) = e−[s(1)−s(x)]/εz(2)(x, ε), (3.24)

to the homogeneous differential equation corresponding to (3.17), where for
any N > 0, and certain z

(k)
n (x) ∈ C∞([0, 1]) with z

(k)
0 (0) = 1,

z(k)(x, ε) =
N−1∑
n=0

εnz(k)
n (x) + O(εN ) (3.25)

uniformly as ε → 0+ for 0 ≤ x ≤ 1.
The Wronskian of these two homogeneous equation solutions is W (x, ε) =

W (0, ε)φ(x, ε), where
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φ(x, ε) = e
−

∫ x

0
a(t,ε) dt (3.26)

and W (0, ε) = ε−1e−s(1)/εΔ(ε), where Δ(ε) has an expansion in powers of ε
as ε → 0+. In particular, Δ(0) = 2[b(0, 0)]1/2. By the method of variation of
parameters, if we let

g(1)(x, t, ε) = z(1)(x, ε)ψ(t, ε)z(2)(t, ε), (3.27)

g(2)(x, t, ε) = z(2)(x, ε)ψ(t, ε)z(1)(t, ε), (3.28)

where ψ(t, ε) = c(t, ε)/[Δ(ε)φ(t, ε)], then the full differential equation (3.17)
has a particular solution

yp(x, ε) = F (1)(x, ε) + F (2)(x, ε), (3.29)

where
F (1)(x, ε) = ε−1

∫ x

0

e−[s(x)−s(t)]/εg(1)(x, t, ε) dt, (3.30)

F (2)(x, ε) = ε−1

∫ 1

x

e−[s(t)−s(x)]/εg(2)(x, t, ε) dt. (3.31)

From Exercise 2.5, we know F (1)(x, ε), F (2)(x, ε) have uniformly valid
asymptotic expansions for 0 ≤ x ≤ 1, expressible as

F (1)(x, ε) =
N−1∑
n=0

εn[u(1)
n (x) + v(1)

n (x/ε)] + O(εN ), (3.32)

F (2)(x, ε) =
N−1∑
n=0

εn[u(2)
n (x) + v(2)

n ((1 − x)/ε)] + O(εN ), (3.33)

where u
(k)
n (x) ∈ C∞([0, 1]), v

(k)
n (X) ∈ C∞([0,∞]) and v

(k)
n (X) = o(X−∞) as

X → ∞. In addition, there exists v
(k)
h,n(X) ∈ C∞([0,∞]) such that

y
(1)
h (x, ε) =

N−1∑
n=0

εnv
(1)
h,n(x/ε) + O(εN ), (3.34)

y
(2)
h (x, ε) =

N−1∑
n=0

εnv
(2)
h,n((1 − x)/ε) + O(εN ) (3.35)

uniformly for 0 ≤ x ≤ 1 as ε → 0+, and v
(k)
h,n(X) = o(X−∞) as X → ∞.

Putting all this together we see the solution to (3.17), namely yp(x, ε) plus
an ε-dependent linear combination of y

(1)
h (x, ε) and y

(2)
h (x, ε), subject to the

boundary conditions y(0, ε) = α(ε), y(1, ε) = β(ε), has a uniformly valid
expansion for 0 ≤ x ≤ 1 of the form
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y(x, ε) =
N−1∑
n=0

εn[un(x) + vn(x/ε) + wn((1 − x)/ε)] + O(εN ) (3.36)

as ε → 0+, where un(x) ∈ C∞([0, 1]) and vn(X), wn(X) ∈ C∞([0,∞]).
Furthermore, as in Problem C, and also A, because we also have vn(X),
wn(X) = o(X−∞) as X → ∞, each set of terms in this expansion can be
determined separately. Indeed, with an(x) = a[0,n](x, 0), bn(x) = b[0,n](x, 0)
and cn(x) = c[0,n](x, 0), it is clear that

u′′
n−2(x) +

n−2∑
k=0

ak(x)u′
n−2−k(x) −

n∑
k=0

bk(x)un−k(x) = cn(x). (3.37)

Also, in terms of An(X) = A[0,n](X, 0), Bn(X) = B[0,n](X, 0), where
A(X, ε) = a(εX, ε), B(X, ε) = b(εX, ε), we have

v′′n(X) +
n−1∑
k=0

Ak(X)v′n−1−k(X) −
n∑

k=0

Bk(X)vn−k(X) = 0, (3.38)

and finally, if we change and let A(X, ε) = a(1−εX, ε), B(X, ε) = b(1−εX, ε),
then

w′′
n(X) −

n−1∑
k=0

Ak(X)w′
n−1−k(X) −

n−1∑
k=0

Bk(X)wn−k(X) = 0, (3.39)

where, again, An(X) = A[0,n](X, 0), Bn(X) = B[0,n](X, 0). So, first we
find the outer expansion terms un(x) for 0 ≤ n ≤ N − 1, beginning with
u0(x) = −c(x, 0)/b(x, 0), from (3.37). Then the (constant coefficient) differ-
ential equations (3.38) and (3.39) can be solved successively, with the bound-
ary conditions vn(0) = α[n](0)−un(0), wn(1) = β[n](0)−un(1), together with
vn(∞) = wn(∞) = 0. A Maple program patterned after ProbC is readily de-
vised to automate these calculations. To get more than a couple of terms,
however, Maple needs assistance like the assistance provided in ProbB to
calculate vn(X) and wn(X). This issue comes up in the next section, too.

If a(x, ε) = 1 + x, b(x, ε) = 2 + x + ε, c(x, ε) = −4x2 and α(ε) = 2,
β(ε) = 1/2, then

u0(x) =
4x2

2 + x
, v0(X) = 2e−

√
2X , w0(X) = −5

6
e−

√
3X . (3.40)

Figure 3.1 is a graph of u0(x)+v0(x/ε)+w0((1−x)/ε) when ε = .15, together
with Maple’s numerical solution of (3.17) in this case and u0(x) alone. The
same items are graphed in Figure 3.2 using ε = .30.
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Fig. 3.1 Numerical solution to (3.17) and asymptotic approximations of the solution when
a(x, ε) = 1 + x, b(x, ε) = 2 + x + ε, c(x, ε) = −4x2, y(0, ε) = 2, y(1, ε) = 1/2 and ε = 0.15.

2.0
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Fig. 3.2 Same as Figure 3.1 except ε = 0.30.

3.3 Problem E, Part 1

The problem for this section is a variation of Problem D in the same way Prob-
lem B is a variation of A. Assuming the functions a(x, ε), c(x, ε), d(x, ε) ∈
C∞([0, 1] × [0, εo]) for some εo > 0, we also assume 0 < b(x) ∈ C∞([0, 1])
and, without loss of generality, set b(0) = 1. The differential equation is

ε2y′′ + ε2a(x, ε)y′ − [xb(x) + ε2c(x, ε)]y = εd(x, ε), (3.41)
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and we are interested in the solution satisfying the boundary conditions
y(0, ε) = α(ε), y(1, ε) = β(ε), where α(ε), β(ε) ∈ C∞([0, εo]). We will start
with an analysis of the special case

ε2y′′ − xy = εd(x, ε). (3.42)

For (3.42), the corresponding homogeneous equation has the two linearly
independent Airy function solutions

y
(1)
h (x, ε) = Ai(x/ε2/3), y

(2)
h (x, ε) = e−(2/3)/εBi(x/ε2/3) (3.43)

and, knowing the Wronskian of Ai(X) and Bi(X) is 1/π, it is readily verified
that

yp(x, ε) = F (1)(x, ε) + F (2)(x, ε) (3.44)

is a particular solution to (3.42), where

F (1)(x, ε) = −πAi(x/ε2/3)
∫ x

0

d(t, ε)Bi(t/ε2/3) dt, (3.45)

F (2)(x, ε) = −πBi(x/ε2/3)
∫ 1

x

d(t, ε)Ai(t/ε2/3) dt. (3.46)

If we let

g(X) = e(2/3)X3/2
Ai(X), h(X) = e−(2/3)X3/2

Bi(X), (3.47)

and define ĝ(X) = g(X4), ĥ(X) = h(X4), then ĝ(X), ĥ(X) ∈ C∞([0,∞]). If
we also let x̂ = x1/4, ε̂ = ε1/6, and substitute t = t̂4, then

F (1)(x, ε) = ĝ(x̂/ε̂)
∫ x̂

0

d̂(t̂, ε̂)ĥ(t̂/ε̂)e−(2/3)(x̂6−t̂6)/ε̂6
dt̂, (3.48)

F (2)(x, ε) = ĥ(x̂/ε̂)
∫ 1

x̂

d̂(t̂, ε̂)ĝ(t̂/ε̂)e(2/3)(x̂6−t̂6)/ε̂6
dt̂, (3.49)

where d̂(t̂, ε̂) = −4πt̂3d(t̂4, ε̂6) ∈ C∞([0, 1]× [0, ε
1/6
o ]). The asymptotic expan-

sion form of these two integrals is readily established.
By Corollary 1, there exists φn(t) ∈ C∞([0, 1]), ψn(T ) ∈ C∞([0,∞]) such

that for any N ≥ 0,

d̂(t̂, ε̂)ĝ(t̂/ε̂) =
N−1∑
n=0

ε̂n[φn(t̂ ) + ψn(t̂/ε̂)] + O(ε̂N ) (3.50)

uniformly for 0 ≤ t̂ ≤ 1, and the same can be said for d̂(t̂, ε̂)ĥ(t̂/ε̂). In turn,
the results of Exercise 3.5, applied with u(t) = φn(t) and v(T ) = ψn(T ), show
there exists φ

(k)
n (x) ∈ C∞([0, 1]), ψ

(k)
n (X) ∈ C∞([0,∞]), and also θ

(2)
n (X) =
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o(X−∞) in C∞([0,∞]), such that

F (1)(x, ε) = ĝ(x̂/ε̂)
N−1∑
n=0

ε̂n[φ(1)
n (x̂) + ψ(1)

n (x̂/ε̂)] + O(ε̂N ), (3.51)

F (2)(x, ε) = ĥ(x̂/ε̂)
N−1∑
n=0

ε̂n[φ(2)
n (x̂) + ψ(2)

n (x̂/ε̂) + θ(2)
n ((1 − x)/ε)] + O(ε̂N ).

(3.52)
From here, with a few additional applications of Theorem 1, it is clear that the
solution to (3.42) satisfying the boundary conditions y(0, ε) = α(ε), y(1, ε) =
β(ε) has the asymptotic form

y(x, ε) =
N−1∑
n=0

ε̂n[ûn(x̂) + v̂n(x̂/ε̂) + wn((1 − x)/ε)] + O(ε̂N ), (3.53)

where ûn(x) ∈ C∞([0, 1]), both v̂n(X), wn(X) ∈ C∞([0,∞]), and wn(X) =
o(X−∞) as X → ∞. For example, to deal with the contribution of y

(2)
h (x, ε)

to (3.53), let t = 1 − x and observe that y
(2)
h (x, ε) = f(t, t/ε, ε̂), where

f(t, T, ε̂) = e−Tρ(t)ĥ((1 − t)1/4/ε̂) (3.54)

with ρ(t) = (2/3)t−1[1 − (1 − t)3/2]. Since ρ(t) > 0 for 0 ≤ t ≤ 1/2,
f(t, T, ε̂) ∈ C∞([0, 1/2] × [0,∞] × [0, 1]). Thus we can apply Theorem 1 to
each f [0,0,n](t, t/ε, 0) to see there exist polynomials pn(T ) such that for any
N ≥ 0,

y
(2)
h (x, ε) =

N−1∑
n=0

ε̂npn(t/ε)e−t/ε + O(ε̂N ) (3.55)

uniformly as ε → 0+ for 0 ≤ t ≤ 1/2. Furthermore, both y(2)(x, ε) and
the sum in (3.55) are uniformly o(ε∞) for 1/2 ≤ t ≤ 1. Hence (3.55) holds
uniformly for the full interval, 0 ≤ x ≤ 1.

As in Problem D, the homogeneous version of (3.41), the full differential
equation for Problem E, has a pair of linearly independent solutions express-
ible as

y
(1)
h (x, ε) = e−s(x)/εz(1)(x, ε), (3.56)

y
(2)
h (x, ε) = e−[s(1)−s(x)]/εz(2)(x, ε), (3.57)

where
s(x) =

∫ x

0

[tb(t)]1/2 dt. (3.58)

However, the asymptotic form of z(k)(x, ε) is more complex. It is shown in
[9] that if a(x, ε) = 0, then for any N ≥ 0,
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z(k)(x, ε) =
N−1∑
n=0

εn/6[u(k)
n (x) + v(k)

n (x/ε2/3)] + O(εN/6), (3.59)

where u
(k)
n (x4) ∈ C∞([0, 1]) and v

(k)
n (X4) ∈ C∞([0,∞]). In Exercise 3.6,

we show that in fact this is true whether a(x, ε) = 0 or not. Therefore, as
above for (3.42) and as in Problem D, we can use the method of variation
of parameters to obtain a particular solution of (3.41). It is also a straight-
forward matter to determine the asymptotic form of this solution, and the
homogeneous equation solutions (3.56) and (3.57).

Note that s(x) = x3/2σ(x), where 0 < σ(x) ∈ C∞([0, 1]), and again intro-
duce x̂ = x1/4 to get s(x) = x̂6σ̂(x̂), where σ̂(x̂) = σ(x̂4). Then, for example,

e−s(x)/εv(k)
n (x/ε2/3) = f(x̂, x̂/ε̂) (3.60)

where ε̂ = ε1/6, as above, and

f(x̂, X̂) = e−X̂6σ̂(x̂)v(k)
n (X̂4), (3.61)

which is in C∞([0, 1] × [0,∞]). Furthermore, f [0,−n](x̂,∞) = 0, so

f(x̂, x̂/ε̂) =
N−1∑
n=0

ε̂nφ[0,n](x̂/ε̂, 0) + O(ε̂N ), (3.62)

where φ(X̂, ε̂) = f(ε̂X̂, X̂). Also for example, to deal with

F (x, ε) = e−(x̂/ε̂)6σ̂(x̂)

∫ x̂

0

u(t̂ )e(t̂/ε̂)6σ̂(t̂ ) dt̂, (3.63)

where u(t̂ ) ∈ C∞([0, 1]), let t̃ = t̂[σ̂(t̂ )]1/6, let t̂ = θ(t̃ ) denote the inverse of
this transformation, and let x̃ = x̂[σ̂(x̂)]1/6 to obtain

F (x, ε) = e−(x̃/ε̂)6
∫ x̃

0

g(t̃)e(t̃/ε̂)6 dt̃, (3.64)

where g(t̃ ) = u(θ(t̃ ))θ′(t̃ ). It follows by Exercise 3.5 that

F (x, ε) =
N−1∑
n=0

ε̂n[φn(x̃) + ψn(x̃/ε̂)] + O(ε̂N ), (3.65)

for any N ≥ 0, where φn(x̃) ∈ C∞([0, 1]) and ψn(X̃) ∈ C∞([0,∞]). Also,
we can apply Theorem 1 to f(x̂, X̂) = ψn(X̂[σ̂(x̂)]1/6). Thus, ultimately,
we see the solution to the boundary value problem for (3.41) has the same
asymptotic form as the solution for the special case (3.42). That is, there
exists un(x), vn(X) and wn(X) such that, for any N ≥ 0,
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y(x, ε) =
N−1∑
n=0

εn/6[un(x) + vn(x/ε2/3) + wn((1 − x)/ε)] + O(εN/6), (3.66)

uniformly as ε → 0+ for 0 ≤ x ≤ 1, where un(x4) ∈ C∞([0, 1]), both vn(X4)
and wn(X) are in C∞([0,∞]), vn(∞) = 0 and wn(X) = o(X−∞) as X → ∞.

3.4 Problem E, Part 2

To determine the functions un(x) = un(x̂4) = ûn(x̂) and vn(X) = vn(X̂4) =
v̂n(X̂) in (3.66), we need to compute the outer and inner expansions

ONy(x, ε) =
N−1∑
n=0

ε̂nŷ[0,n](x̂, 0), (3.67)

and

INy(x, ε) =
N−1∑
n=0

ε̂nŶ [0,n](X̂, 0), (3.68)

where ŷ(x̂, ε̂) = y(x̂4, ε̂6) and Ŷ (X̂, ε̂) = ŷ(ε̂X̂, ε̂). If we let z(x, ε̂) = y(x, ε̂6),
then ŷ(x̂, ε̂) = z(x̂4, ε̂) and therefore

ONy(x, ε) =
N−1∑
n=0

ε̂nzn(x) (3.69)

where zn(x) = z[0,n](x, 0). If we also let Z(X, ε̂) = y(ε̂4X, ε̂6), then Z(X̂4, ε̂) =
Ŷ (X̂, ε̂), so

INy(x, ε) =
N−1∑
n=0

ε̂nZn(X), (3.70)

where Zn(X) = Z [0,n](X, 0), and X = X̂4.
Upon substituting ε = ε̂6 in (3.41), it is clear that zn(x) = 0 unless n ≥ 1

is a multiple of 6. In particular,

z6(x) = −d(x, 0)/[xb(x)], z12(x) = −d[0,1](x, 0)/[xb(x)]. (3.71)

Also, therefore, from the expansion of ε̂6z6(ε̂4X) + ε̂12z12(ε̂4X), we have

I14O14y(x, ε) = −ε̂6[d00/x + d10 − d00b1] − ε̂10[d00(b2
1 − b2)

−d10b1 + d20]X − ε̂12[d01/x + d11 − d01b1], (3.72)

where dmn = d[m,n](0, 0) and bn = b[n](0). Hence,
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u6(x) = z6(x) + d00/x, u12(x) = z12(x) + d01/x (3.73)

and otherwise un(x) = 0 for 0 ≤ n ≤ 13. Also,

v6(X) = Z6(X) + d10 − d00b1, v12(X) = Z12(X) + d11 − d01b1, (3.74)

v10(X) = Z10(X) + [d00(b2
1 − b2) − d10b1 + d20]X, (3.75)

and otherwise vn(X) = Zn(X) for 0 ≤ n ≤ 13.
From the differential equation for Z(X, ε̂) it is clear that Zn(X) = 0 if n

is odd. Also,
Z ′′

0 − XZ0 = 0, Z0(0) = α0, (3.76)

Z ′′
2 − XZ2 = d00, Z2(0) = 0, (3.77)

Z ′′
4 − XZ4 = b1X

2Z0 − a00Z
′
0, Z4(0) = 0, (3.78)

Z ′′
6 − XZ6 = b1X

2Z2 − a00Z
′
2 − d10X, Z6(0) = α1, (3.79)

where αn = α[n](0). In addition, vn(∞) = 0 implies, in particular, Z0(∞) =
Z2(∞) = 0. Therefore

Z0(X) = [α0/Ai(0)]Ai(X), (3.80)

and, in terms of

P (X) = −πAi(X)
∫ X

0

Bi(T ) dT − πBi(X)
∫ ∞

X

Ai(T ) dT, (3.81)

which satisfies P ′′ − XP = 1 , we have

Z2(X) = d00P (X) − [d00P (0)/Ai(0)]Ai(X). (3.82)

In general, to find Zn(X), we need to solve an equation of the form

Z ′′−XZ = λ(X)R(X)+μ(X)S(X)+ρ(X)P (X)+σ(X)Q(X)+τ(X), (3.83)

where R(X) = Ai(X), S(X) = Ai′(X), Q(X) = P ′(X), and λ(X), μ(X),
ρ(X), σ(X) and τ(X) are polynomials. But the desired solution to an equa-
tion of this form has the same form as its right side. That is,

Z(X) = p(X)R(X) + q(X)S(X) + r(X)P (X) + s(X)Q(X) + t(X), (3.84)

where p(X), q(X), r(X), s(X) and t(X) are polynomials.
Suppose, for example, that

λ(X) = λ0 + λ1X + λ2X
2, μ(X) = μ0 + μ1X + μ2X

2. (3.85)

Substitution of (3.84) into (3.83) reveals
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p′′ − 2Xq′ + q = λ(X), q′′ + 2p′ = μ(X). (3.86)

and upon inserting

p(X) = p0 + p1X + p2X
2 + p3X

3, q(X) = q0 + q1X + q2X
2, (3.87)

we get
2p2 + q0 = λ0, 6p3 + 3q1 = λ1, 5q2 = λ2, (3.88)

2q2 + 2p1 = μ0, 4p2 = μ0, 6p3 = μ2. (3.89)

Hence, in order,

q2 =
1
5
λ2, p3 =

1
6
μ2, q1 =

1
3
(λ1 − 6p3), (3.90)

p2 =
1
4
μ0, q0 = λ0 − 2p2, p1 =

1
2
(μ0 − 2q2). (3.91)

The functions r(X), s(X), and t(X) are similarly determined once ρ(X),
σ(X) and τ(X) are given and, in the end, p0 is determined by

Z(0) = p0R(0) + q0S(0) + r(0)P (0) + s(0)Q(0) + t(0). (3.92)

Below is a Maple program that performs these calculations for us. The
program also computes wn(X), using the fact that wn(X) is a polynomial
times exp[−b(1)X], and

y(1, ε) = ONy(1, ε) +
N−1∑
n=0

ε̂nwn(0) + O(ε̂N ), (3.93)

which follows from (3.66), since, of course, [IN − ONIN ]y(1, ε) = O(ε̂N ).
Although somewhat longer than our previous programs, ProbE follows a fa-
miliar procedure. First there is a section for the computation of ONy(x, ε).
Then there is a longer than normal section, because of all the polynomials to
determine, for the computation of INy(x, ε). After computing INONy(x, ε),
the functions un(x) and vn(X) are determined, and at the end of the program
there is a separate section to determine each wn(X). The symbols I,P , Q, R
and S in the program are used to denote 1, P (X), Q(X), R(X) and S(X),
respectively. Also, Po = P (0), Qo = Q(0), Ro = R(0) and So = S(0).

ProbE := proc(a, b, c, d, α, β, N)
ONy := sum(εn · yn, n = 0..N − 1);
ONdy := sum(εn · dyn, n = 0..N − 1);
ONddy := sum(εn · ddyn, n = 0..N − 1);
eq := subs(ε = ε6, ε2 ·ONddy + ε2 · a ·ONdy− (x · b+ ε2 · c) ·ONy− ε · d);
ONeq := series(eq, ε = 0, N);
for k from 0 to N − 1 do
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temp := coeff (ONeq, ε, k); yk := solve(temp = 0, yk);
dyk := diff (yk, x); ddyk := diff (dyk, x);
ONeq := subs(yk = yk, dyk = dyk, ddyk = ddyk, ONeq);
ONy := subs(yk = yk,ONy); yk = yk;
end do;
Nα := series(subs(ε = ε6, α), ε = 0, N);
Nβ := series(subs(ε = ε6, β), ε = 0, N);
A := subs(ε = ε6, x = ε4 · X, a); B := subs(x = ε4 · X, b);
C := subs(ε = ε6, x = ε4 · X, c); D := subs(ε = ε6, x = ε4 · X, d);
INy := sum(εn · Yn, n = 0..N − 1); INdy := sum(εn · dYn, n = 0..N − 1);
rths := series(−ε4·A·INdy+(X ·B−X+ε8·C)·INy+ε2·D·I, ε = 0, N+1);
for k from 0 to N − 1 do
temp := coeff (rths, ε, k);
if temp = 0 then M := 0; else M := degree(temp,X); end if ;
λ := coeff (temp, R); μ := coeff (temp, S); ρ := coeff (temp, P );
σ := coeff (temp,Q); τ := coeff (temp, I);
pm := sum(pn · Xn, n = 0..M + 1); qm := sum(qn · Xn, n = 0..M);
rm := sum(rn · Xn, n = 0..M + 1); sm := sum(sn · Xn, n = 0..M);
tm := sum(tn · Xn, n = 0..M);
for j from 0 to M do
coeff (diff (pm,X,X) + 2 · X · diff (qm, X) + qm − λ,X,M − j);
solve(% = 0, qM−j); qm := subs(qM−j = %, qm);
coeff (diff (qm, X, X) + 2 · diff (pm,X) − μ,X, M − j);
solve(% = 0, pM+1−j); pm := subs(pM+1−j = %, pm);
coeff (diff (rm,X, X) + 2 · X · diff (sm,X) + sm − ρ,X,M − j);
solve(% = 0, sM−j); sm := subs(sM−j = %, sm);
coeff (diff (sm,X,X) + 2 · diff (rm, X) − σ,X,M − j);
solve(% = 0); rm := subs(rM+1−j = %, rm);
coeff (diff (tm,X,X) − X · tm + 2 · diff (sm,X) + rm − τ, X,M + 1 − j);
solve(% = 0, tM−j); tm := subs(tM−j = %, tm);
end do;
r0 := coeff (τ,X, 0) − 2 · coeff (sm,X, 1) − 2 · coeff (tm,X, 2);
rm := subs(r0 = r0, rm); r0 := r0;
q0 := coeff (qm, X, 0); s0 := coeff (sm,X, 0); t0 := coeff (tm,X, 0);
p0 := (coeff (Nα, ε, k) − q0 · So − r0 · Po − s0 · Qo − t0) · Ro−1;
p0 := simplify(%); pm := subs(p0 = p0, pm);
Y k := pm · R + qm · S + rm · P · sm · Q + tm · I;
dY k := (diff (pm,X) + X · qm) · R + (diff (qm, X) + pm) · S
+(diff (rm, X)+X ·sm)·P +(diff (sm,X)+rm)·Q+(diff (tm,X)+sm)·I;
rths := subs(Yk = Y k, dY k = dY k, rths); Yk = Y k;
end do;
series(subs(x = ε4·X4, ONy), ε = 0, N); INONy := convert(%, polynom);
vpart := sum(Xn · coeff (INONy, X, n), n = 0..N);
upart := subs(X = ε−4 · x, INONy − vpart);
for k from 0 to N − 1 do
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uk := yk − coeff (upart, ε, k);
print(uk = simplify(uk));
end do;
for k from 0 to N − 1 do
vk := Yk − I · coeff (vpart, ε, k);
print(vk = vk);
end do;
A := subs(ε = ε6, x = 1 − ε6 · X, a);
B := subs(ε = ε6, x = 1 − ε6 · X, b);
C := subs(ε = ε6, x = 1 − ε6 · X, c); m := sqrt(subs(x = 1, b));
Nw := sum(εn · wn, n = 0..N − 1); Ndw := sum(εn · dwn, n = 0..N − 1);
rths := series(−ε6 ·A ·Ndw+((1−ε6 ·X) ·B+ε12 ·C−m2) ·Nw, ε = 0, N);
for k from 0 to N − 1 do
χ := coeff (rths, ε, k);
if χ = 0 then K = 0 else K := degree(χ, X); end if ;
π0 := coeff (Nβ, ε, k) − subs(x = 1, yk); πK+2 := 0;
for j from 0 to K do
i := K − j;
πi+1 := ((i + 2) · (i + 1) · πi+2 − coeff (χ, X, i)) · (2 · m · (i + 1))−1;
end do;
sum(πn · Xn, n = 0..K + 1); πs := simplify(%);
rths := subs(wk = πs, dwk = diff (πs, X) − m · πs, rths);
print(wk = πs · em·X);
end do;
end proc:

3.5 Exercises

3.1. Complete the analysis necessary to verify that θN (x, ε) in (3.15) is uni-
formly O(1) for 0 ≤ x ≤ 1 as ε → 0+. In particular, using (3.11) and (3.13),
show that

N−1∑
n=0

εn[εu′′
n(x) + a(x, ε)u′

n(x) + b(x, ε)un(x)] − c(x, ε) = O(εN ) (3.94)

uniformly for 0 ≤ x ≤ 1 and using (3.12) and (3.14), show that

N∑
n=0

εn[v′′n(x/ε) + a(x, ε)v′
n(x/ε) + b(x, ε)vn−1(x/ε)] = O(εN ) (3.95)

uniformly for 0 ≤ x ≤ 1.
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3.2. Our approach to Problem C demonstrates a general method for confirm-
ing the uniform validity of singular perturbation calculations. This method
is used in [7] and [12] to treat a nonlinear generalization of Problem C, for
example, and also in [2] and [4], where the emphasis is on partial differen-
tial equation problems, but without the clarity achievable with Corollary 1
and Corollary 2. An application of the method to treat a nonlinear integral
equation generalization of Problem C, in which Corollary 2 again plays a
prominent role, is given in [10].

In general, suppose f(x,X, ε) ∈ C∞([0, 1] × [0,∞] × [0, εo]) for some
εo > 0 so that by Corollary 1 there exists un(x) ∈ C∞([0, 1]) and vn(X) ∈
C∞([0,∞]) with vn(∞) = 0 such that, for any N ≥ 0,

f(x, x/ε, ε) =
N−1∑
n=0

εn[un(x) + vn(x/ε)] + O(εN ) (3.96)

uniformly for 0 ≤ x ≤ 1 as ε → 0+. If, in addition, h(x, y, ε) ∈ C∞([0, 1] ×
[a, b] × [0, εo]) and a ≤ f(x,X, ε) ≤ b for all (x,X, ε) ∈ [0, 1] × [0,∞] ×
[0, εo], then g(x,X, ε) = h(x, f(x,X, ε), ε) also is in C∞([0, 1]×[0,∞]×[0, εo])
and therefore, for certain φn(x) ∈ C∞([0, 1]) and ψn(X) ∈ C∞([0,∞]) with
ψn(∞) = 0, we know

g(x, x/ε, ε) =
N−1∑
n=0

εn[φn(x) + ψn(x/ε)] + εNθN (x, ε), (3.97)

where θN (x, ε) = O(1) uniformly for 0 ≤ x ≤ 1 as ε → 0+. Also, in particular,

φ0(x) = h(x, u0(x), 0), (3.98)

ψ0(X) = h(0, u0(0) + v0(X), 0) − h(0, u0(0), 0), (3.99)

φ1(x) = u1(x)h[0,1,0](x, u0(x), 0) + h[0,0,1](x, u0(0), 0)

+c0x
−1[h[0,1,0](x, u0(x), 0) − h[0,1,0](0, u0(0), 0)], (3.100)

where c0 = v
[−1]
0 (∞), and

ψ1(X) = v1(X)h[0,1,0](0, u0(0) + v0(X), 0) +
4∑

n=1

An(X), (3.101)

where

A1(X) = u′
0(0)X[h[0,1,0](0, u0(0) + v0(X), 0)

−h[1,0,0](0, u0(0), 0) − 2c0X
−1h[0,2,0](0, u0(0), 0)], (3.102)
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A2(X) = X[h[1,0,0](0, u0(0) + v0(X), 0)

−h[0,1,0](0, u0(0), 0) − c0X
−1h[1,1,0](0, u0(0), 0)], (3.103)

A3(X) = [h[0,0,1](0, u0(0) + v0(X), 0) − h[0,0,1](0, u0(0), 0)], (3.104)

A4(X) = u1(0)[h[0,1,0](0, u0(0) + v0(X), 0) − h[0,1,0](0, u0(0), 0)]. (3.105)

3.3. Another way to calculate the terms of (3.2) when the initial conditions
y(0, ε) = α(ε), y[1,0](0, ε) = ε−1γ(ε) are given is to begin by first calculating
the terms of the inner expansion,

INy(x, ε) =
N−1∑
n=0

εnYn(X). (3.106)

These satisfy Yn(0) = αn and Y ′
n(0) = γn and just as noted for Problem A

in Exercise 2.2, they are of the form Yn(X) = pn(X)+ qn(X)exp[−a(0, 0)X],
so vn(X) = Yn(X) − pn(X) for 0 ≤ n ≤ N − 1. Once this calculation is
done, the terms of ONy(x, ε) which satisfy (3.13), can be computed using
un(0) = αn − vn(0). Write a Maple program to do these calculations.

3.4. There also is another way to calculate the terms of (3.2) when the bound-
ary conditions y(0, ε) = α(ε), y(1, ε) = β(ε) are given. The idea is to first
solve (3.1) for y(x, ε, κ), subject to the initial conditions y(0, ε, κ) = α(ε) and
y[1,0,0](0, ε, κ) = κ/ε. This yields

y(x, ε, κ) =
N−1∑
n=0

εn
[
un(x, κ) + vn(x/ε, κ)

]
+ O(εN ), (3.107)

say, and then, to satisfy y(1, ε, κ) = β(ε), we just have to solve the (linear)
equation

β(ε) =
N−1∑
n=0

εnun(1, κ) + O(εN ) (3.108)

for

κ =
N−1∑
n=0

γnεn + O(εN ), (3.109)

then substitute into (3.107) and reduce the result to the final form (3.2),
altogether a simple task for Maple. Try this out with your own choice of
parameters, using your program from the previous exercise. You can check
your results using the program at the end of Section 3.1.

3.5. First, suppose u(t) ∈ C∞([0, 1]) and
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F (x, ε) =
1
ε
e−(x/ε)k

∫ x

0

u(t)e(t/ε)k

dt, (3.110)

where k ≥ 2 is an integer. Let

p(t) =
k−2∑
m=0

u[m](0)tm, q(t) = t−k+1[u(t) − p(t)]. (3.111)

Show that

F (x, ε) =
k−2∑
m=0

εmu[m](0)Pm(x/ε) +
1
k

εk−1[q(x) − q(0)e−(x/ε)k

]

+
1
k

εk−1e−(x/ε)k

∫ x

0

q′(t)e(t/ε)k

dt, (3.112)

where

Pm(X) = e−Xk

∫ X

0

TmeT k

dT, (3.113)

and show that, for 0 ≤ m ≤ k − 2, Pm(X) ∈ C∞([0,∞]). Since q′(t) ∈
C∞([0, 1]), this process can be repeated indefinitely, and hence, for any N ≥
0,

F (x, ε) =
N−1∑
n=0

εn[un(x) + vn(x/ε)] + O(εN ) (3.114)

uniformly as ε → 0+ for 0 ≤ x ≤ 1, where un(x) ∈ C∞([0, 1]), vn(X) ∈
C∞([0,∞]). Also, un(x) = 0 for 0 ≤ n ≤ k − 2 and vn(∞) = 0 for all n ≥ 0.

Second, show by the same process that if

F (x, ε) =
1
ε
e(x/ε)k

∫ 1

x

u(t)e−(t/ε)k

dt, (3.115)

then there exists un(x) ∈ C∞([0, 1]), and vn(X), wn(X) ∈ C∞([0,∞]) such
that

F (x, ε) =
N−1∑
n=0

εn[un(x) + vn(x/ε) + wn((1 − x)/ε̂)] + O(εN ) (3.116)

uniformly as ε → 0+, for 0 ≤ x ≤ 1, where ε̂ = εk. In particular, if x = 1− t,
then (x/ε)k − (1/ε)k = −(t/ε̂)φ(t), where 0 < φ(t) ∈ C∞([0, 1]), and hence,
by Theorem 1,

e−(x/ε)k+(1/ε)k

=
N−1∑
n=0

ε̂nπn(t/ε̂)e−(t/ε̂) + O(ε̂N ), (3.117)
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where πn(T ) is a polynomial, so, also, wn(X) = o(X−∞) as X → ∞.
Finally, suppose v(T ) ∈ C∞([0,∞]) and

G(x, ε) = ε−1e−(x/ε)k

∫ x

0

v(t/ε)e(t/ε)k

dt, (3.118)

H(x, ε) = ε−1e(x/ε)k

∫ 1

x

v(t/ε)e−(t/ε)k

dt. (3.119)

Show that G(x, ε) = V (x/ε), where V (X) ∈ C∞([0,∞]), and show there
exists vn(X), wn(X) ∈ C∞([0,∞]) such that

H(x, ε) =
N−1∑
n=0

εn[vn(x/ε) + wn((1 − x)/ε̂)], (3.120)

where, as above, ε̂ = εk.

3.6. Show that if y(x, ε) satisfies (3.41) when d(x, ε) = 0, and if

φ(x, ε) = e
− 1

2

∫ x

0
a(t,ε) dt

, (3.121)

then ỹ(x, ε) = y(x, ε)/φ(x, ε) satisfies

ε2ỹ′′ − [xb(x) + ε2c̃(x, ε)]ỹ = 0, (3.122)

where c̃(x, ε) ∈ C∞([0, 1] × [0, εo]). Show further that if u(x4) ∈ C∞([0, 1])
and v(X4) ∈ C∞([0,∞]), then there exists un(x), vn(X)) such that un(x4) ∈
C∞([0, 1]), vn(X4) ∈ C∞([0,∞]) and, for any N ≥ 0,

[u(x) + v(x/ε2/3)]φ(x, ε) =
N−1∑
n=0

εn/6[un(x) + vn(x/ε2/3)] + O(εN/6) (3.123)

uniformly as ε → 0+ for 0 ≤ x ≤ 1. Therefore, since (3.59) is known to hold
when a(x, ε) = 0, it also holds when a(x, ε) �= 0.

3.7. Show that if y(x, ε) is the solution to

ε2y′′ − (x + 2x2 + ε2)y = 5 − 3x (3.124)

satisfying y(0, ε) = 2 and y(1, ε) = ε, then y(x, ε) is approximately

c(x, ε) = ε̂−1v1(x/ε̂) + [u(x) + v2(x/ε̂) + w((1 − x)/ε)], (3.125)

where ε̂ = ε2/3,
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Fig. 3.3 Numerical solution to (3.124) and asymptotic approximations of the solution
when ε = 0.1.

v1(X) =
5P (0)
Ai(0)

Ai(X) − 5P (X), u(x) =
−13

1 + 2x
, w(X) = −2

3
e−

√
3X

(3.126)
and

v2(X) =
11

Ai(0)
Ai(X) − 2P (0)

Ai(0)
[XAi(X) − X2Ai′(X)]

+2XP (X) − 2X2P ′(X) + 4. (3.127)

Figure 3.3 shows this approximation and Maple’s numerical solution for
y(x, ε) when ε = 0.1. It also shows c(x, ε) plus ε̂v3(x/ε̂), the next term after
c(x, ε) in the uniformly valid asymptotic expansion of y(x, ε), which is signif-
icantly closer to the numerical solution.

3.8. The Bessel function Jν(ν(1 − x)) is the solution to

(1 − x)2y′′ − (1 − x)y′ − ν2(2x − x2)y = 0 (3.128)

satisfying y(0, ν) = Jν(ν) and, for ν > 0, y(1, ν) = 0. Let ε = 2−1/2ν−1 and
use ProbE together with the result of Exercise 1.6 to compute the first several
terms of the remarkably simple result (compared, for example, to (9.3.35) of
[1], also on page 425 of [6], or the result in [8]),

(ν/2)1/3Jν(ν(1 − x)) =
N−1∑
n=0

ε̂nvn(x/ε̂) + O(ε̂N ) (3.129)
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uniformly as ν → ∞ for 0 ≤ x ≤ 1, where ε̂ = 2−1/3ν−2/3 and

vn(X) = pn(X)Ai(X) + qn(X)Ai′(X), (3.130)

where pn(X), qn(X) are polynomials. In particular,

p0(X) = 1, p1(X) =
1
5
X, p2(X) =

3
35

X2 +
9

200
X5, (3.131)

q0(X) = 0, q1(X) =
3
10

X2, q2(X) =
1
35

+
17
70

X3. (3.132)

In addition,

p3(X) =
−2
225

+
173
3150

X3 +
957

14000
X6, (3.133)

p4(X) =
−947

173250
X +

5903
138600

X4 +
23573
294000

X7 +
27

80000
X10, (3.134)

q3(X) =
37

1575
X +

611
3150

X4 +
9

2000
X7, (3.135)

q4(X) =
158

12375
X2 +

110767
693000

X5 +
549

56000
X8. (3.136)

3.9. Write a Maple program for Problem D and use it to verify (3.40). Also
verify that

u1(x) =
−4x2

(2 + x)2
, v1(X) =

1
4
(−5X − 2

√
2X −

√
2X2)e−

√
2X , (3.137)

w1(X) =
1
72

(32 − 55X + 20
√

3X + 5
√

3X2)e−
√

3X (3.138)

for this example.



Chapter 4

Logarithm Problems

4.1 Preliminaries

We saw in Chapter 1 that logarithms arose as a result of integrating a function
satisfying the conditions of Theorem 1. Suppose, for a general result, that
f(x,X, ε) ∈ C∞([0, 1] × [0,∞] × [0, εo]) for some εo > 0 and

y(x, ε) = x−1

∫ x

0

f(t, t/ε, ε) dt. (4.1)

We know, given N ≥ 0, that

f(t, t/ε, ε) =
N−1∑
n=0

εn[un(t) + vn(t/ε)] + O(εN ) (4.2)

uniformly for 0 ≤ t ≤ 1 as ε → 0+ for certain un(t) ∈ C∞([0, 1]) and
vn(T ) ∈ C∞([0,∞]) with vn(∞) = 0. If we let

Un(x) = x−1

∫ x

0

un(t) dt, (4.3)

and

Vn(X) = X−1

∫ X

0

[vn(T ) − cn(1 + T )−1] dT, (4.4)

where cn = v
[−1]
n (∞), then Un(x) ∈ C∞([0, 1]) and Vn(X) ∈ C∞([0,∞]).

Therefore

y(x, ε) =
N−1∑
n=0

εn[Un(x) + Vn(x/ε) + cnL1(x/ε)] + O(εN ), (4.5)

© Springer Science+Business Media, LLC 2011 
49L.A. Skinner, Singular Perturbation Theory, DOI 10.1007/978-1-4419-9958-0_4,



50 4 Logarithm Problems

uniformly as ε → 0+, where L1(X) = X−1 ln(1 + X). Note that Vn(∞) = 0
and 0 ≤ L1(X) ≤ 1.

Repeated integration gives rise to powers of logarithms. Let L0(X) = 1,
Ln(X) = X−1 lnn(1 + X) for integer n ≥ 1 and note that Ln(X) = O(1) for
0 ≤ X ≤ ∞. If, for example, v(T ) ∈ C∞([0,∞]), v(∞) = 0 and

F (X) = X−1

∫ X

0

v(T ) ln(1 + T ) dT, (4.6)

then

F (X) =
1
2
cL2(X) + X−1

∫ X

0

φ(T ) ln(1 + T ) dT, (4.7)

where c = v[−1](∞) and φ(T ) = v(T ) − c(1 + T )−1 = O(T−2). Therefore,
after an integration by parts,

F (X) =
1
2
cL2(X) + φ1(X)L1(X) + φ0(X), (4.8)

where

φ1(X) = −
∫ ∞

X

φ(T ) dT, φ0(X) = −X−1

∫ X

0

φ1(T )(1 + T )−1 dT. (4.9)

By induction, if

F (X) = X−1

∫ X

0

v(T ) lnn(1 + T ) dT, (4.10)

where n is a positive integer, there exist φk(X) ∈ C∞([0,∞]) for 0 ≤ k ≤ n+1
such that

F (X) =
n+1∑
k=0

φk(X)Lk(X). (4.11)

In particular φn+1(X) = c/(n + 1). Also, φk(∞) = 0 for 0 ≤ k ≤ n.
As another example, suppose

y(x, ε) = x−1

∫ x

0

t2u(t, ε) ln
1 + t/ε

1 + x/ε
dt (4.12)

for ε > 0, where u(x, ε) ∈ C∞([0, 1]× [0, εo]) for some εo > 0. If we integrate
by parts and define

a(t, ε) = t−3

∫ t

0

s2u(s, ε) ds, (4.13)

then a(t, ε) ∈ C∞([0, 1] × [0, εo]) and, since

t3

t + ε
= t2 − εt + ε2 − ε3

t + ε
, (4.14)
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we have

y(x, ε) = x−1

∫ x

0

(−t2 + εt − ε2)a(t, ε) dt + ε3x−1

∫ x

0

a(t, ε)
t + ε

dt. (4.15)

Furthermore, from Exercise 1.7, there exist g(t, ε) ∈ C∞([0, 1] × [0, εo]) and
c(ε) ∈ C∞([0, εo]) such that

a(t, ε)
t + ε

= g(t, ε) +
c(ε)
t + ε

. (4.16)

Therefore

y(x, ε) = x2a0(x, ε) + εxa1(x, ε) + ε2a2(x, ε) + ε2c(ε)L1(x/ε) (4.17)

for all (x, ε) ∈ [0, 1] × (0, εo], where

a0(x, ε) = −x−3

∫ x

0

t2a(t, ε) dt, a1(x, ε) = x−2

∫ x

0

ta(t, ε) dt, (4.18)

a2(x, ε) = x−1

∫ x

0

[−a(t, ε) + εg(t, ε)] dt. (4.19)

In fact (see Exercise 4.1), for any integers n ≥ 0 and m ≥ 1, if

y(x, ε) = x−1

∫ x

0

tnu(t, ε) lnm 1 + t/ε

1 + x/ε
dt (4.20)

for ε > 0, where u(x, ε) ∈ C∞([0, 1] × [0, εo]), then there exists ak(x, ε) ∈
C∞([0, 1]× [0, εo]) for 0 ≤ k ≤ n and ck(ε) ∈ C∞([0, εo]) for 1 ≤ k ≤ m such
that

y(x, ε) =
n∑

k=0

εkxn−kak(x, ε) + εn
m∑

k=1

ck(ε)Lk(x/ε) (4.21)

for all (x, ε) ∈ [0, 1] × (0, εo]. We will use this result to help establish the
asymptotic form of the solution to Problem F in the next section.

Another source of logarithms is exponentiation. For example, if y(x, ε) =
1 + x/ε for 0 ≤ x ≤ 1 and ε > 0, then

yε(x, ε) = eε ln(1+x/ε) = 1 + x
N−1∑
n=0

1
(n + 1)!

εnLn+1(x/ε) + O(εN ) (4.22)

uniformly for 0 ≤ x ≤ 1 as ε → 0+. Taking this a step further, if d(ε) ∈
C∞([0, εo]), then there exists constants dnk such that

yεd(ε)(x, ε) = 1 + x
N−1∑
n=0

εn
n∑

k=0

dnkLk+1(x/ε) + O(εN ) (4.23)
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uniformly for 0 ≤ x ≤ 1 as ε → 0+ . In particular,

d00 = d0, d10 = d1, d11 =
1
2
d2
0, d20 = d2,

d21 = d0d1 d22 =
1
6
d3
0, (4.24)

where dn = d[n](0). Also, by combining (4.2) and (4.22), observe that if

y(x, ε) = (1 + x/ε)εf(x, x/ε, ε), (4.25)

where f(x,X, ε) ∈ C∞([0, 1] × [0,∞] × [0, εo]), then there exists unm(x) ∈
C∞([0, 1]) and vnm(X) ∈ C∞([0,∞]) such that

y(x, ε) =
N−1∑
n=0

εn
n+1∑
m=0

[unm(x) + vnm(x/ε)]Lm(x/ε) + O(εN ) (4.26)

uniformly for 0 ≤ x ≤ 1 as ε → 0+. For example, if

y(x, ε) = (3 + ε + 3x + x2 + x/ε)ε, (4.27)

then (4.26) holds with

u00(x) = 1, u01(x) = x, (4.28)

u10(x) = 0, u11(x) = 0, u12(x) =
1
2
x, (4.29)

u20(x) = 3+x, u21(x) = 2+3x+x2, u22(x) = 0, u23(x) =
1
6
x, (4.30)

and
v00(X) = 0, v01(X) = 0, (4.31)

v10(X) = ln
3 + X

1 + X
, v11 = 0, v12(X) = 0, (4.32)

v20(X) =
−8

3 + X
+ ln2 3 + X

1 + X
, (4.33)

v21 = −2 + X ln
3 + X

1 + X
, v22(X) = 0, v23(X) = 0. (4.34)

4.2 Problem F

Assume a(x, ε), b(x, ε) ∈ C∞([0, 1] × [0, εo]) for some εo > 0. In addition,
assume a(0, 0) = I, a positive integer. In this section we seek an asymptotic
expansion for the solution to
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(x + ε)y′ + a(x, ε)y = b(x, ε) (4.35)

satisfying y(0, ε) = 0.
We know there exists d(ε) ∈ C∞([0, εo]) and g(x, ε) ∈ C∞([0, 1] × [0, εo])

such that
a(x, ε)
x + ε

= g(x, ε) +
I + εd(ε)

x + ε
(4.36)

for ε > 0. Therefore

y(x, ε) =
h(x, ε)

ε(1 + x/ε)I

∫ x

0

(1 + t/ε)I−1

(
1 + t/ε

1 + x/ε

)εd(ε)

ψ(t, ε) dt, (4.37)

where

h(x, ε) = exp
(
−

∫ x

0

g(t, ε) dt

)
, ψ(x, ε) = b(x, ε)/h(x, ε). (4.38)

Also, as in (4.23), there exists constants dnm, such that(
1 + t/ε

1 + x/ε

)εd(ε)

= 1 +
N∑

n=1

εn
n∑

m=1

dnm lnm 1 + t/ε

1 + x/ε
+ O(εN ) (4.39)

for 0 ≤ t ≤ x ≤ 1 and ε → 0+.
Let

wm(x, ε) =
h(x, ε)

ε(1 + x/ε)I

∫ x

0

(1 + t/ε)I−1ψ(t, ε) lnm 1 + t/ε

1 + x/ε
dt. (4.40)

Since
x−1

∫ x

0

(t/ε)kψ(t, ε) dt = (x/ε)kψk(x, ε), (4.41)

where ψk(x, ε) ∈ C∞([0, 1]× [0, εo]), we have w0(x, ε) = f00(x, x/ε, ε), where

f00(x, X, ε) =
Xh(x, ε)
(1 + X)I

I−1∑
k=0

(
I − 1

k

)
Xkψk(x, ε), (4.42)

and clearly f00(x,X, ε) ∈ C∞([0, 1] × [0,∞] × [0, εo]). Similarly, for m ≥ 1,
in view of the expression (4.21) for the integral (4.20), there exist φk(x, ε) ∈
C∞([0, 1] × [0, εo]) and ck(ε) ∈ C∞([0, εo]) such that

wm(x, ε) =
(x/ε)h(x, ε)
(1 + x/ε)I

(
I−1∑
k=0

(x/ε)kφk(x, ε) +
m∑

k=1

ck(ε)Lk(x/ε)

)
. (4.43)

Hence, for every m ≥ 0, and 0 ≤ k ≤ m, there exists fmk(x,X, ε) ∈
C∞([0, 1] × [0,∞] × [0, εo]) such that
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wm(x, ε) =
m∑

k=0

fmk(x, x/ε, ε)Lk(x/ε). (4.44)

Moreover, when we substitute this into

y(x, ε) = w0(x, ε) +
N−1∑
n=0

εn
n∑

m=1

dmnwm(x, ε) + O(εN ), (4.45)

it is clear there exists φnk(x,X, ε) ∈ C∞([0, 1] × [0,∞] × [0, εo]), just linear
combinations of the fmk(x,X, ε), such that

y(x, ε) =
N−1∑
n=0

εn
n∑

k=0

φnk(x, x/ε, ε)Lk(x/ε) + O(εN ). (4.46)

Therefore, envisioning the expansion of each φnk(x, x/ε, ε) according to
Corollary 1, we see, finally, there exists unm(x) ∈ C∞([0, 1]) and vnm(X) ∈
C∞([0,∞]), with vnm(∞) = 0, such that

y(x, ε) =
N−1∑
n=0

εn
n∑

m=0

[unm(x) + vnm(x/ε)]Lm(x/ε) + O(εN ) (4.47)

uniformly as ε → 0+ for 0 ≤ x ≤ 1.
Of course, we want to calculate the terms of (4.47) from the differential

equation (4.35). It is apparent from (4.47) that y(x, ε) has an inner expansion
of the familiar form,

INy(x, ε) =
N−1∑
n=0

εnYn(X), (4.48)

such that Y (X, ε) = y(εX, ε) = INy(x, ε) + O(εN ) uniformly on any finite
interval 0 ≤ X ≤ Δ < ∞ as ε → 0+. Indeed, in somewhat tangled form,

INy(x, ε) =
N−1∑
n=0

εn
n∑

m=0

(
N−1−n∑

k=0

(εX)kunmk + vnm(X)

)
Lm(X), (4.49)

where unmk = u
[k]
nm(0). In untangled form, we find, with help from Maple,

Yn(X) =
n∑

m=0

Znm(X)Lm(X), (4.50)

where,
Z00(X) = u000 + v00(X), (4.51)

Z10(X) = u100 + u001X + v10(X), (4.52)



4.2 Problem F 55

Z11(X) = u110 + v11(X), (4.53)

Z20(X) = u200 + u101X + u002X
2 + v20(X), (4.54)

Z21(X) = u210 + u111X + v21(X), (4.55)

Z22(X) = u220 + v22(X), (4.56)

Z30(X) = u300 + u201X + u102X
2 + u003X

3 + v30(X) (4.57)

Z31(X) = u310 + u211X + u112X
2 + v31(X), (4.58)

Z32(X) = u320 + u221X + v32(X), (4.59)

Z33(X) = u330 + v33(X). (4.60)

In general, Znm(X) = rnm(X) + vnm(X) and

rnm(X) =
n−m∑
k=0

rnmkXk, (4.61)

where rnmk = un−k,m,k. Therefore

unm(x) =
N−1−n∑

k=0

rn+k,m,kxk + O(xN−n). (4.62)

In addition, (4.47) implies the existence of an outer expansion for y(x, ε),
having the form

ONy(x, ε) = z00(x) +
N−1∑
n=1

εn
n−1∑
m=0

lnm(ε)znm(x), (4.63)

such that y(x, ε) = ONy(x, ε) + O(εN lnN−1(ε)) uniformly on 0 < δ ≤ x ≤ 1
as ε → 0+. Indeed, in particular, using vnmk = v

[−k]
nm (∞), we have

z00(x) = u00(x), (4.64)

z10(x) = v001x
−1 + u10(x), (4.65)

z20(x) = v002x
−2 + v101x

−1 + x−1u11(x) ln(x) + u20(x), (4.66)

z21(x) = −x−1u11(x), (4.67)

z30(x) = v003x
−3 + v102x

−2 + v111x
−2 ln(x) + u11(x)x−2

+v201x
−1 + u21(x)x−1 ln(x) + u22(x)x−1 ln2(x) + u30(x), (4.68)

z31(x) = −x−2v111 − u21(x) − 2u22(x)x−1 ln(x), (4.69)

z32(x) = x−1u22(x). (4.70)
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The first part of the Maple program ProbF , given below, calculates Yk(X)
for 0 ≤ k ≤ N − 1, once a(x, ε), b(x, ε) and N are prescribed, in the usual
way from the differential equation for Y (X, ε). Then each Zij(X) for 0 ≤ i ≤
N − 1 and 0 ≤ j ≤ i is isolated and split into rij(X) and vij(X). Note that
this involves a procedure for expanding Zij(X) as X → ∞ out to precisely
O(X−N ). The resulting series expansions for uij(x) as x → 0 and vij(X) as
X → ∞ are used in the outer expansion calculations. For example, if we take
a(x, ε) = 2 + x, b(x, ε) = 1 and N = 4, ProbF yields

v00(X) =
−1

2(1 + X)2
, v10(X) =

6X − 1
12(1 + X)2

, (4.71)

v11(X) =
−X

2(1 + X)2
, v20(X) =

21X + 8
36(1 + X)2

, (4.72)

v21(X) =
−13X − 6
12(1 + X)2

, v22(X) =
−X

4(1 + X)2
, (4.73)

and in accordance with (4.62), ProbF also yields

u00(x) =
1
2
− 1

6
x +

1
24

x2 − 1
120

x3 + O(x4), u11(x) = O(x3), (4.74)

u10(x) =
1
12

− 1
18

x +
29
144

x2 + O(x3), u22(x) = O(x2), (4.75)

u21(x) =
1
2
− 1

4
x + O(x2), u20(x) =

−2
9

+
131
2160

x + O(x2). (4.76)

In addition, the ProbF substitution of (4.63) into (4.35), still with a(x, ε) =
2 + x, b(x, ε) = 1 and N = 4, yields the sequence of differential equations

xz′00 + (2 + x)z00 = 1, xz′10 + (2 + x)z10 = −z′00(x), (4.77)

xz′20 + (2 + x)z20 = −z′10(x), xz′21 + (2 + x)z21 = 0, (4.78)

xz′31 + (2 + x)z31 = −z′21(x), xz′32 + (2 + x)z32 = 0, (4.79)

and from the last lines of ProbF we get

z00(x) = u00(x), z10(x) = u10(x) (4.80)

z20(x) =
1
2
x−1 + x−1 ln(x)u11(x) + u20(x), z21(x) = −x−1u11(x), (4.81)

z31(x) =
1
2
x−2 − x−1u21(x) − 2x−1 ln(x)u22(x), (4.82)

u32(x) = x−1u22(x), (4.83)

in accordance with (4.64)-(4.70).
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To complete the calculations for this example, from (4.80a) and (4.74a)
we see z00(0) = 1/2 and therefore the solution to (4.77a) is

u00(x) =
1
x2

(e−x − 1 − x) (4.84)

Next, the solution to (4.77b) such that z10(0) = u10(0) = 1/12 is

u10(x) = −e−x

x2
[E(x) +

2
x

(ex − 1 − x)], (4.85)

where E(x) =
∫ x

0
t−1(et − 1) dt. In addition, we readily find

u11(x) = 0, u22(x) = 0, u21(x) =
1
2x

(1 − ex), (4.86)

and finally, the (convergent) series solution to (4.78a) yields

u20(x) = −2
9

+
131
2160

x − 977
8640

x2 +
4367

302400
x3 + O(x4). (4.87)

Thus we have computed all the terms of (4.47) with N = 3, assuming
a(x, ε) = 2 + x, b(x, ε) = 1.

ProbF := proc(a, b, N)
A := subs(x = ε · X, a);B := subs(x = ε · X, b);
INy := sum(εn · Yn, n = 0..N − 1);
INdy := sum(εn · dYn, n = 0..N − 1);
INde := series((1 + X) · INdy + A · INy − B, ε = 0, N);
INde := convert(%, polynom);
for k from 0 to N − 1 do
temp := coeff (INde, ε, k);
de := subs(Yk = z(X),dYk = diff (z(X), X), temp) = 0;
dsolve({de, z(0) = 0});
Y k := rhs(%); dY k := diff (Y k,X);
INde := subs(Yk = Y k, dYk = dY k, INde);
Yk := Y k; end do;
for i from 0 to N − 1 do
Zi,0 := coeff (Yi, ln(1 + X), 0);
for j from 1 to i do
Zi,j := X · coeff (Yi, ln(1 + X), j);
end do; end do;
for i from 0 to N − 1 do
for j from 0 to i do
if Zi,j = 0 then sZij := 0 else
temp := 0; k := N − 1;
while order(temp) < N do
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k := k + 1; sZij := series(Zi,j , X = ∞, k);
temp := series(subs(X = X−1, %), X = 0, k);
end do; end if ;
ri,j := convert(series(sZij, X = ∞, 1), polynom);
vij := simplify(Zi,j − ri,j); print(vi,j = vij);
svi,j := sZij − ri,j ;
end do; end do;
for i from 0 to N − 1 do
for j from 0 to i do
uij := sum(xl · coeff (ri+l,j , X, l), l = 0..N − 1 − i) + O(xN−i);
print(ui,j = uij);
end do; end do;
ONy := z0,0 + sum(εn · sum(ln(ε)m · zn,m,m = 0..n − 1), n = 0..N − 1);
ONdy := Dz0,0+sum(εn ·sum(ln(ε)m ·Dzn,m,m = 0..n−1), n = 0..N−1);
eq := (x + ε) · ONdy + a · ONy − b;
ONde := series(eq, ε = 0, N);
for i from 0 to N − 1 do;
for j from 0 to i do;
dei := coeff (ONde, ε, i); deij := coeff (dei, ln(ε), j); print(deij = 0);
end do; end do; L0 := 1;
for i from 1 to N − 1 do Li := X−1 · ln(1 + X)i; end do;
y := sum(εn · (sum(Lm · (un,m + svn,m),m = 0..n)), n = 0..N − 1);
ONy := series(subs(X = x · ε−1, y), ε = 0, N);
for n from 0 to N − 1 do
zn := coeff (ONy, ε, n);
end do;
print(z0,0 = z0);
for n from 1 to N − 1 do;
for m from 0 to n − 1 do;
lnzn,m := coeff (zn, ln(ε),m); print(zn,m = lnzn,m);
end do; end do;
end proc:

4.3 Problem G, Part 1

Problem G is to derive an asymptotic expansion for the solution to the dif-
ferential equation

ε2y′′ + [xa(x) + ε2b(x, ε)]y′ + εc(x, ε)y = d(x, ε) (4.88)

that satisfies the boundary conditions y(0, ε) = α(ε), y(1, ε) = β(ε). We
will assume b(x, ε), c(x, ε), d(x, ε) ∈ C∞([0, 1] × [0, εo]) and α(ε), β(ε) ∈
C∞([0, εo]) for some εo > 0. We also assume 0 < a(x) ∈ C∞([0, 1]) and,
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without loss of generality, take a(0) = 2, α(ε) = 0. First we will obtain
asymptotic expansions for two initial value problems, namely,

ε2w′′ + [xa(x) + ε2b(x, ε)]w′ + εc(x, ε)w = d(x, ε) (4.89)

subject to w(0, ε) = 0, w′(0, ε) = 0, and

ε2z′′ + [xa(x) + ε2b(x, ε)]z′ + εc(x, ε)z = 0 (4.90)

subject to z(0, ε) = 0, z′(0, ε) = (2/
√

π)ε−1. In the end we will determine an
asymptotic expansion for the function κ(ε) such that

y(x, ε) = w(x, ε) + κ(ε)z(x, ε). (4.91)

This approach to Problem G is essentially the same as the one described in
Exercise 3.4 for Problem C.

It is reasonable to expect the solution to

ε2w′′
0 + xa(x)w′

0 = d(x, ε) (4.92)

such that w0(0, ε) = w′
0(0, ε) = 0, the problem obtained by neglecting

ε2b(x, ε)w′ + εc(x, ε)w in (4.89), uniformly approximates w(x, ε). An even
better approximation should be the solution to the problem obtained by sub-
stituting ε2b(x, ε)w′

0(x, ε)+εc(x, ε)w0(x, ε) for ε2b(x, ε)w′+εc(x, ε)w. We are
going to prove that in fact

w(x, ε) =
∞∑

n=0

εnwn(x, ε), (4.93)

where, for n ≥ 1,

ε2w′′
n + xa(x)w′

n = −εb(x, ε)w′
n−1(x, ε) − c(x, ε)wn−1(x, ε). (4.94)

First, there exists B > 0 such that |b(x, ε)|, |c(x, ε)|, |d(x, ε)| ≤ B for all
(x, ε) ∈ [0, 1] × [0, εo]. Therefore |εw′

0(x, ε)| ≤ BF (x, ε) on [0, 1] × (0, εo],
where

F (x, ε) = ε−1e−(x/ε)2σ(x)

∫ x

0

e(t/ε)2σ(t) dt, (4.95)

σ(x) = x−2

∫ x

0

ta(t) dt. (4.96)

Note that σ(x) > 0 for 0 ≤ x ≤ 1. If we let τ = t[σ(t)]1/2 and denote
the inverse of this transformation by t = θ(τ), and let ξ = x[σ(x)]1/2, then
|θ′(τ)| = 2[σ(t)]1/2/[t + 2σ(t)] ≤ M for some M > 0, so F (x, ε) ≤ MP (ξ/ε),
still on [0, 1] × (0, εo], where
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P (Z) = e−Z2
∫ Z

0

eT 2
dT. (4.97)

Also, P (Z) = O(Z) as Z → 0 and P (Z) = O(Z−1) as Z → ∞. Hence, there
exists K > 0 such that P (Z) ≤ KZ/(1 + Z2) for 0 ≤ Z ≤ ∞. In addition,

ξ/ε

1 + (ξ/ε)2
=

x/ε

1 + (x/ε)2
f(x, x/ε), (4.98)

where

f(x,X) =
(1 + X2)[σ(x)]1/2

1 + X2σ(x)
, (4.99)

so f(x, x/ε) = O(1) on [0, 1] × (0, εo], by Theorem 1. Therefore F (x, ε) ≤
A(x/ε)/[1 + (x/ε)2] for some constant A > 0. Furthermore, X/(1 + X2) ≤
2/(1 + X) for 0 ≤ X ≤ ∞. Therefore

|w0(x, ε)| ≤ 2ABε−1

∫ x

0

dt

1 + t/ε
≤ 2AB ln(1 + 1/ε) (4.100)

for all (x, ε) ∈ [0, 1]×(0, εo]. In addition, X/(1+X2) ≤ 2 ln(1+X). Therefore
|εw′

0(x, ε)| ≤ 2AB ln(1 + 1/ε), too.
Next, we now know

|εb(x, ε)w′
0(x, ε) + c(x, ε)w0(x, ε)| ≤ 4AB2 ln(1 + 1/ε) (4.101)

for 0 ≤ x ≤ 1 and 0 < ε ≤ εo. Consequently, |εw′
1(x, ε)| ≤ 4AB2 ln(1 +

1/ε)F (x, ε), and therefore both |w1(x, ε)| and |εw′
1(x, ε)| are bounded by

8A2B2 ln2(1+1/ε). Indeed, by induction, if we let C = 4AB, then for any n ≥
0, both |wn(x, ε)| and |εw′

n(x, ε| are less than or equal to (1/2)Cn+1 lnn+1(1+
1/ε) for all (x, ε) ∈ [0, 1] × (0, εo]. So, of the three sums,

∞∑
n=0

εnwn(x, ε),
∞∑

n=0

εnw′
n(x, ε),

∞∑
n=0

εnw′′
n(x, ε), (4.102)

we know the first two converge absolutely and uniformly for all (x, ε) ∈
[0, 1] × (0, εo], assuming εo is set sufficiently small, and therefore the second
sum is the derivative of the first. The third sum also converges absolutely
and uniformly, and therefore is the second derivative of the first sum. This is
seen by summing both sides of (4.94) times εn, and this shows simultaneously
that the first sum in (4.102) is indeed the desired solution of (4.89).

To ascertain the asymptotic form of w(x, ε), we need to examine the terms
of (4.93) in more detail. Let λm(x, ε) = xLm(x/ε) for m ≥ 1 and λ0(x, ε) = 1.

Proposition 1. Assume f(x, X, ε) ∈ C∞([0, 1] × [0,∞] × [0, εo]) and let

gm(x, ε) = ε−1e−(x/ε)2σ(x)

∫ x

0

e(t/ε)2σ(t)f(t, t/ε, ε)λm(t, ε) dt, (4.103)
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where 0 < σ(x) ∈ C∞([0, 1]). There exists φmnk(x) ∈ C∞([0, 1]) and
ψmnk(X) ∈ C∞([0,∞]) with ψmnk(∞) = 0 such that for any N ≥ 0,

gm(x, ε) =
N−1∑
n=0

εn
m∑

k=0

[φmnk(x) + ψmnk(x/ε)]λk(x, ε) + O(εN ) (4.104)

uniformly as ε → 0+ for 0 ≤ x ≤ 1. In particular, φm,0,k(x) = 0 for 0 ≤ k ≤
m and, for m ≥ 1, ψm,0,0(X) = φm,1,0(x) = 0.

Proof. We know this is true for m = 0 from our work on Problem E. For
m ≥ 1, we readily get (4.104) from (4.103) using integration by parts. In
particular,

g1(x, ε) = g0(x, ε)λ1(x, ε) − εĝ0(x, ε), (4.105)

where ĝ0(x, ε) is the same as g0(x, ε), except g0(t, ε)/(1+ t/ε) occurs in place
of f(t, t/ε, ε). Therefore (4.104) holds for m = 1 with φ1,0,1(x) = 0 and
φ1,0,0(x) = ψ1,0,0(X) = φ1,1,0(x) = 0. For m ≥ 2,

gm(x, ε) = g0(x, ε)λm(x, ε) − ĝm−1(x, ε), (4.106)

where ĝm−1(x, ε) is the same as gm−1(x, ε), except mg0(t, ε)/(1 + t/ε) oc-
curs in place of f(t, t/ε, ε). Therefore φm,0,m(x) = 0 and if we assume
φm−1,0,k(x) = 0 for 0 ≤ k ≤ m − 1, ψm−1,0,0(X) = 0 and φm−1,1,0(x) = 0,
then φm,0,k(x) = 0 for 0 ≤ k ≤ m − 1, ψm,0,0(X) = 0 and φm,1,0(x) = 0.

It follows from Proposition 1 with m = 0 that

εw′
0(x, ε) =

N−1∑
n=0

εn[u0,n,0(x) + v0,n,0(x/ε)] + O(εN ), (4.107)

where u0,n,0(x) ∈ C∞([0, 1]), v0,n,0(X) ∈ C∞([0,∞]) and u0,0,0(x) = 0.
Therefore, as in the first paragraph of Section 4.1,

εw0(x, ε) =
N−1∑
n=0

εn
1∑

k=0

[U0,n,k(x) + V0,n,k(x/ε)]λk(x, ε) + O(εN ) (4.108)

uniformly as ε → 0+ for 0 ≤ x ≤ 1, where U0,n,0(x) ∈ C∞([0, 1]), V0,n,0(X) ∈
C∞([0,∞]) and, in particular, U0,0,0(x) = V0,0,0(X) = 0 and U0,n,1(x) +
V0,n,1(x/ε) = cn,1, a constant. To proceed further, we need a more general
result.

Proposition 2. Assume f(x,X, ε) ∈ C∞([0, 1] × [0,∞] × [0, εo]) for some
εo > 0. Assume also that f(x,∞, 0) = 0 and let

gm(x, ε) =
∫ x

0

f(t, t/ε, ε) lnm(1 + t/ε) dt. (4.109)
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There exists φmnk(x) ∈ C∞([0, 1]) and ψmnk(X) ∈ C∞([0,∞]) such that

gm(x, ε) =
N−1∑
n=0

εn
m+1∑
k=0

[φmnk(x) + ψmnk(x/ε)]λk(x, ε) + O(εN ) (4.110)

uniformly as ε → 0+ for 0 ≤ x ≤ 1. In particular, φm,0,0(x) = ψm,0,0(X) = 0
and for each n ≥ 0, φm,n,m+1(x) + ψm,n,m+1(x/ε) = cn,m+1, a constant.

Proof. This follows from the second paragraph of Section 4.1, in particular,
from our analysis of (4.20) with n = 0, or, independently, using integration
by parts. We leave the details as an exercise.

At this point, from (4.107) and (4.108), and Corollary 1, we can see

ε[εb(x, ε)w′
0(x, ε) + c(x, ε)w0(x, ε)] =

N−1∑
n=0

εn
1∑

k=0

[φnk(x) + ψnk(x/ε)]λk(x, ε) + O(εN ), (4.111)

where φnk(x) ∈ C∞([0, 1]), ψnk(X) ∈ C∞([0,∞]) and φ0,0(x) = ψ0,0(X) =
0. Therefore, by Proposition 1, there exists u1,n,k(x) ∈ C∞([0, 1]) and
v1,n,k(X) ∈ C∞([0,∞]) such that, after canceling an ε factor,

εw′
1(x, ε) =

N−1∑
n=0

εn
1∑

k=0

[u1,n,k(x)+v1,n,k(x/ε)] lnk(1+x/ε)+O(εN ). (4.112)

In particular, u1,0,k(x) = 0 for k = 0, 1. Thus we can apply Proposition 2 to
this result, and therefore

εw1(x, ε) =
N−1∑
n=0

εn
2∑

k=0

[U1,n,k(x) + V1,n,k(x/ε)]λk(x, ε) + O(εN ), (4.113)

where, in particular, U1,0,0(x) = V1,0,0(X) = 0. Obviously, we can iterate this
process indefinitely. Hence we conclude, there exists Umnk(x) ∈ C∞([0, 1])
and Vnmk(X) ∈ C∞([0,∞]) such that for every m ≥ 0,

εwm(x, ε) =
N−1∑
n=0

εn
m+1∑
k=0

[Umnk(x) + Vnmk(x/ε)]λk(x, ε) (4.114)

uniformly as ε → 0+ for 0 ≤ x ≤ 1. It is also true, by virtually the same
reasoning, that z(x, ε), our solution to (4.90), has an infinite series solution,

z(x, ε) =
∞∑

m=0

εmzm(x, ε), (4.115)
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and εzm(x, ε) has an asymptotic expansion of the same form as εwm(x, ε).
See Exercise 4.5.

4.4 Problem G, Part 2

We can see upon substituting (4.114) into (4.93) that if we let w̃(x, ε) =
ε2w(x, ε), then there exists unm(x) ∈ C∞([0, 1]) and vnm(X) ∈ C∞([0,∞])
such that, for any N ≥ 0,

w̃(x, ε) =
N−1∑
n=0

εn
n∑

m=0

[unm(x) + vnm(x/ε)]Lm(x/ε) + O(εN ) (4.116)

uniformly as ε → 0+ for 0 ≤ x ≤ 1. That is, w̃(x, ε) has the same asymptotic
form as the solution to Problem F. Hence, if we denote the N -term expansion
of W̃ (X, ε) = w̃(εX, ε) by

IN w̃(x, ε) =
N−1∑
n=0

εnW̃n(X), (4.117)

then, as with Yn(X) in Section 4.2,

W̃n(X) =
n∑

m=0

Znm(X)Lm(X) (4.118)

and for the leading terms we have (4.51)-(4.60). Likewise, for the N-term
outer expansion

ON w̃(x, ε) = z00(x) +
N−1∑
n=1

εn
n−1∑
m=0

lnm(ε)znm(x), (4.119)

we have (4.64)-(4.70). The differential equation for w̃(x, ε) is

ε2w̃′′ + [xa(x) + ε2b(x, ε)]w̃′ + εc(x, ε)w̃ = ε2d(x, ε), (4.120)

of course, and it is readily determined that

xa(x)z′00 = 0, (4.121)

xa(x)z′10 = −c0(x)z00(x), (4.122)

xa(x)z′21 = 0 (4.123)

xa(x)z′20 = −b0(x)z′00(x)−z′′00(x)−c0(x)z10(x)−c1(x)z20(x)+d0(x), (4.124)
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xa(x)z′32 = 0, (4.125)

xa(x)z′31 = −c0(x)z21(x), (4.126)

where b0(x) = b(x, 0), c0(x) = c(x, 0), d0(x) = d(x, 0) and c1(x) = c[0,1](x, 0).
From the differential equation for W̃ (X, ε), it is apparent that

W̃ ′′
0 + 2XW̃ ′

0 = 0 (4.127)

and therefore, since W̃n(0) = W̃ ′
n(0) = 0 for all n ≥ 0, W̃0(X) = 0. From

(4.51), first with X = ∞, this means

u00(0) = 0, v00(X) = 0. (4.128)

It follows also that
W̃ ′′

1 + 2XW̃ ′
1 = 0, (4.129)

so W̃1(X) = 0, too, and therefore, by (4.52) and (4.53),

u10(0) = u′
00(0) = u11(0) = 0, v10(X) = v11(X) = 0. (4.130)

Now it is apparent that
W̃ ′′

2 + 2XW̃ ′
2 = d00, (4.131)

where d00 = d(0, 0). Therefore W̃ ′
2(X) = d00P (X), where P (X) = 1

2X−1 +
O(X−3) is the function defined by (4.97). Hence, if we let

Q(X) =
∫ ∞

X

[P (T ) − 1
2
(1 + T )−1] dT, (4.132)

then Q(X) ∈ C∞([0,∞]), in particular, Q(X) = 1
2X−1+O(X−2) as X → ∞,

and
W̃2(X) = d00[Q(0) − Q(X)] +

1
2
d00 ln(1 + X). (4.133)

It follows that Z20(X) = d00[Q(0) − Q(X)] and therefore

u20(0) = d00Q(0), u′
10(0) = u′′

00(0) = 0, v20(X) = −d00Q(X). (4.134)

Also, Z21(X) = 1
2d00X and Z22(X) = 0, so

u′
11(0) =

1
2
d00, u21(0) = u22(0) = 0, v21(X) = v22(X) = 0. (4.135)

Turning to the outer expansion of w̃(x, ε), from (4.121), (4.64) and
(4.128a), we see

z00(x) = u00(x) = 0. (4.136)

Therefore from (4.122), along with (4.65) and (4.128b), we also have
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z10(x) = u10(x) = 0. (4.137)

Similarly, from (4.123), (4.130a) and (4.67), we find

z21(x) = −1
2
d00, u11(x) =

1
2
d00x. (4.138)

To determine u20(x), we currently have xa(x)z′20 = d0(x) from (4.124) and
z20(x) = 1

2d00 ln(x) + u20(x) from (4.66). Therefore, noting (4.134a), we find

u20(x) = d00Q(0) + D(x), (4.139)

where D(x) ∈ C∞([0, 1]) is given by

D(x) =
∫ x

0

[
d0(t)
a(t)

− d00

2

]
dt

t
. (4.140)

At this point we know

u00(x) + v00(x/ε) = 0, (4.141)

u10(x) + v10(x/ε) = 0, (4.142)

u11(x) + v11(x/ε) =
1
2
d00x, (4.143)

u20(x) + v20(x/ε) = d00[Q(x/ε) − Q(0)] + D(x). (4.144)

We also know v21(X) = v22(X) = 0. To determine u21(x) and u22(x), we
need to calculate Z31(X) and Z32(X). For this we have

W̃ ′′
3 + 2XW̃ ′

3 = d01 + d10X − c00W̃2(X) − (b00 + a1X
2)W̃ ′

2(X), (4.145)

where b00 = b(0, 0), c00 = c(0, 0), a1 = a′(0), dij = d[i,j](0, 0) and W̃2(X) is
given by (4.133). If we denote the right side of (4.145) by f(X), then

W̃ ′
3(X) = e−X2

∫ X

0

eT 2
f(T ) dT (4.146)

and
f(X) = μ + λX − 1

2
c00d00 ln(1 + X) + φ(X), (4.147)

where

μ = d01 − c00d00Q(0), λ =
1
2
(2d10 − d00a1)X (4.148)

and φ(X) ∈ C∞([0,∞]). Indeed,

φ(X) = c00d00Q(X) − b00d00P (X) − 1
2
a1d00[2X2P (X) − X], (4.149)
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and, in particular, φ(∞) = 0. Consequently,

e−X2
∫ X

0

eT 2
φ(T ) dT = O(X−2). (4.150)

Also

e−X2
∫ X

0

eT 2
ln(1 + T ) dT = P (X) ln(1 + X) + Π(X), (4.151)

where

Π(X) = e−X2
∫ X

0

eT 2
P (T )

dT

1 + T
, (4.152)

so Π(X) = O(X−3) and Π(X) ∈ C∞([0,∞]). Therefore

W̃ ′
3(X) = μP (X) +

1
2
λ − 1

2
c00d00P (X) ln(1 + X) + ψ(X), (4.153)

where ψ(X) ∈ C∞([0,∞]) and ψ(X) = O(X−2).
We already know∫ X

0

P (T ) dT = Q(0) − Q(X) +
1
2

ln(1 + X). (4.154)

In addition, it is readily determined that∫ X

0

P (T ) ln(1 + T ) dT = R(X) − Q(X) ln(1 + X) +
1
4

ln2(1 + X), (4.155)

where R(X) ∈ C∞([0,∞]). Therefore (4.153) implies

Z31(X) =
1
2
μX +

1
2
c00d00XQ(X), Z32(X) = −1

8
c00d00X (4.156)

and thus from (4.58) and (4.59), we now know

u′
21(0) =

1
2
μ, u′

22(0) = −1
8
c00d00. (4.157)

Using these two results in conjunction with (4.125) and (4.126), we readily
find

u21(x) + v21(x/ε) =
1
2
μx − 1

2
d00xC(x), (4.158)

and
u22(x) + v22(x) = −1

8
c00d00x, (4.159)

where
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C(x) =
∫ x

0

[
c0(t)
a(t)

− c00

2

]
dt

t
. (4.160)

4.5 Problem G, Part 3

When we substitute the results of the last section, beginning with (4.141),
into (4.116), and also note that ln(1 + 1/ε) = ln(1/ε) + O(ε), we get, for the
solution of (4.89) with w(0, ε) = w′(0, ε) = 0, the uniformly valid expansion

w(x, ε) = ln(1/ε)w11(x, ε) + w20(x, ε)

+ ε ln2(1/ε)w22(x, ε) + ε ln(1/ε)w21(x, ε) + O(ε) (4.161)

for 0 ≤ x ≤ 1, where

w11(x, ε) =
1
2
d00

ln(1 + x/ε)
ln(1 + 1/ε)

, (4.162)

w20(x, ε) = D(x) + d00Q(x/ε), (4.163)

w22(x, ε) = −1
8
c00d00

ln2(1 + x/ε)
ln2(1 + 1/ε)

, (4.164)

w21(x, ε) =
1
2
[d01 − c00d00Q(∞) − d00C(x)]

ln(1 + x/ε)
ln(1 + 1/ε)

(4.165)

The function z̃(x, ε) = ε2z(x, ε), where z(x, ε) is the desired solution to
(4.90), has an expansion of the same form as the expansion (4.116) for w̃(x, ε).
This follows from our remarks at the end of Section 4.3. When we calculate
the terms of this expansion, the result corresponding to (4.161) is

z(x, ε) = z20(x, ε) + ε ln(1/ε)z21(x, ε) + O(ε) (4.166)

uniformly as ε → 0+ for 0 ≤ x ≤ 1, where

z20(x, ε) = erf(x/ε), (4.167)

z21(x, ε) = −1
2
c00

ln(1 + x/ε)
ln(1 + 1/ε)

. (4.168)

Returning now to (4.91), to determine κ(ε), we have w(1, ε)+κ(ε)z(1, ε) =
β(ε) and a straightforward calculation, utilizing 1/z(1, ε) = 1+1

2c00ε ln(1/ε)+
O(ε), reveals
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Fig. 4.1 Numerical solution to (4.88) and an asymptotic approximation to the solution
when a(x, 0) = 2+x, b(x, ε = 0, c(x, ε) = cos(x), d(x, ε) = 1+x+ε, y(0, ε) = 0, y(1, ε) = 1
and ε = 0.1

.

κ(ε) = −1
2
d00 ln(1/ε) + [β0 − d00Q(∞) − D(1)]

− 1
8
c00d00ε ln2(1/ε) + O(ε ln(1/ε), (4.169)

where β0 = β(0). When we substitute this, along with the above expansions
for w(x, ε) and z(x, ε) into (4.91), we get, finally, for the solution to Problem
G,

y(x, ε) = ln(1/ε)y11(x, ε) + y20(x, ε) + ε ln2(1/ε)y22(x, ε)

+ O(ε ln(1/ε)), (4.170)

where

y11(x, ε) =
1
2
d00

[
ln(1 + x/ε)
ln(1 + 1/ε)

− erf(x/ε)
]

, (4.171)

y20(x, ε) = [β0 − d00Q(∞) − D(1)]erf(x/ε) + d00Q(x/ε) + D(x), (4.172)

y22(x, ε) =
1
8
c00d00

[
2
ln(1 + x/ε)
ln(1 + 1/ε)

− ln2(1 + x/ε)
ln2(1 + 1/ε)

− erf(x/ε)
]

, (4.173)

and this holds uniformly for 0 ≤ x ≤ 1 as ε → 0+.
A comparison of the numerical solution of (4.88) and the asymptotic result

(4.170)-(4.173), assuming a(x) = 2+x, b(x, ε) = 0, c(x, ε) = cos(x), d(x, ε) =
1+x+ε and β(ε) = 1, in which case D(x) = 1

2 ln(1+x/2), is shown for ε = 0.1
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in Figure 4.1. Note also that if instead of the boundary condition y(1, ε) =
β(ε) for (4.88), we impose the initial condition y′(0, ε) = (2/

√
π)β(ε)ε−1, in

addition to y(0, ε) = 0, then

y(x, ε) = ln(1/ε)w11(x, ε) + [w20(x, ε) + β0z20(x, ε)] + ε ln2(1/ε)w22(x, ε)

+ ε ln(1/ε)[w21(x, ε) + β0z21(x, ε)] + O(ε). (4.174)

4.6 Exercises

4.1. Assume a(x, ε) ∈ C∞([0, 1] × [0, εo]) for some εo > 0, let m ≥ 0, n ≥ 1
be integers and, for ε > 0, let

y(x, ε) =
∫ x

0

tna(t, ε)
t + ε

lnm 1 + t/ε

1 + x/ε
dt. (4.175)

The problem is to show there exists ak(x, ε) ∈ C∞([0, 1]× [0, εo]) for 0 ≤ k ≤
n − 1 and ck(ε) ∈ C∞([0, εo]) for 1 ≤ k ≤ m + 1 such that

y(x, ε) =
n−1∑
k=0

εkxn−kak(x, ε) + εn
m+1∑
k=1

ck(ε) lnk(1 + x/ε) (4.176)

for all (x, ε) ∈ [0, 1] × (0, εo]. Do this first for m = 0 and then, by induction,
for arbitrary m ≥ 0. Now use this to show that (4.21) follows from (4.20),
where n ≥ 0, m ≥ 1.

4.2. Use the Maple routine of Section 1.5 to confirm the expansion results
stated at the end of Section 4.1 for y(x, ε) given by (4.27).

4.3. In Problem F, let a(x, ε) = cos(x), b(x, ε) = 1 + sin(x). Using Prob F,
or a simplified version, show that in (4.47), by computing sufficiently many
terms of just the inner expansion of y(x, ε), we get both

v00(X) =
−1

1 + X
, v10(X) =

1
2(1 + X)

, v11(X) = 0, (4.177)

v20(X) =
−4

12(1 + X)
, v21(X) =

1
2(1 + X)

, v22(X) = 0, (4.178)

and

u00(x) = 1 +
1
2
x +

1
6
x2 +

1
48

x3 +
1

120
x4 − 1

2880
x5 + O(x6), (4.179)

u10(x) = −1
2
− 5

12
x − 5

48
x2 − 1

20
x3 − 17

2880
x4 − 79

60480
x5 + O(x6), (4.180)
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u20(x) =
11
12

+
11
48

x+
17
90

x2+
169
5760

x3+
388

302400
x4+

97
120690

x5+O(x6), (4.181)

u21(x) = −1
2
− 1

8
x2 − 1

96
x4 + O(x6), (4.182)

and evidently u11(x) = u22(x) = 0. At least, u11(x) = O(x6), u22(x) = O(x6).

4.4. Work out the details for the proof of Proposition 2.

4.5. Show that the solution to (4.90) satisfying z(0, ε) = 0, z′(0, ε) =
(2/

√
π)ε−1 has an infinite series solution of the same form as the one for

w(x, ε), and from there show that z̃(x, ε) = ε2z(x, ε) has a uniformly valid
asymptotic expansion of the same form as w̃(x, ε). Compute the first several
terms of this expansion and confirm the results (4.166)-(4.168).



Chapter 5

Oscillation Problems

5.1 Problem H

To begin this chapter, suppose

εy′ + a(x, ε)y = b(x, ε) cos(x/ε), (5.1)

where a(x, ε), b(x, ε) ∈ C∞([0, 1]× [0, εo]) for some εo > 0. Assume also that
a(x, ε) > 0 and y(0, ε) = 0. We know from Problem A that

y(x, ε) = ε−1

∫ x

0

f(x, t, t/ε, ε) cos((x − t)/ε) dt, (5.2)

where
f(x, t, T, ε) = b(x − t, ε)e−Tu(x,t,ε), (5.3)

with
u(x, t, ε) = t−1

∫ x

x−t

a(s, ε) ds, (5.4)

and we could expand f(x, t, t/ε, ε) in accordance with Corollary 2, but this
would not be immediately useful. Instead, assuming b(x, ε) is real valued, like
a(x, ε) > 0, we note from (5.2) that y(x, ε) = Re[w(x, ε)], where w(x, ε) =
z(x, ε)eix/ε and, if we let

φ(x, t, T, ε) = b(x − t, ε)e−Tv(x,t,ε), (5.5)

where
v(x, t, ε) = u(x, t, ε) + i, (5.6)

then
z(x, ε) = ε−1

∫ x

0

φ(x, t, t/ε, ε) dt. (5.7)

© Springer Science+Business Media, LLC 2011 
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Now, since Re[v(x, t, ε)] = u(x, t, ε) > 0 for all (x, t, ε) ∈ [0, 1]× [0, x]× [0, εo],
we have φ(x, t, T, ε) ∈ C∞([0, 1] × [0, x] × [0,∞] × [0, εo]), and therefore, by
Corollary 2, as in Problem A, there exists un(x) ∈ C∞([0, 1]) and vn(X) ∈
C∞([0,∞]) with vn(∞) = 0 such that for any N ≥ 0,

z(x, ε) =
N−1∑
n=0

εn[un(x) + vn(x/ε)] + O(εN ) (5.8)

uniformly as ε → 0+ for 0 ≤ x ≤ 1. Furthermore, we can get the terms of this
expansion, again as in Problem A, from the differential equation for z(x, ε),
which is

εz′ + [a(x, ε) + i]z = b(x, ε). (5.9)

Thus we immediately see

O1z(x, ε) =
b(x, 0)

a(x, 0) + i
(5.10)

and upon introducing X = x/ε in (5.9), we readily find

I1z(x, ε) =
b(0, 0)

a(0, 0) + i

[
1 − e−[a(0,0)+i]x/ε

]
. (5.11)

Consequently,

u0(x) =
b(x, 0)

a(x, 0) + i
, v0(X) = − b(0, 0)

a(0, 0) + i
e−[a(0,0)+i]X , (5.12)

and from here it follows that

y(x, ε) = p0(x) cos(x/ε) + q0(x) sin(x/ε) + r0(x/ε) + O(ε), (5.13)

where

p0(x) =
a(x, 0)b(x, 0)
1 + [a(x, 0)]2

, q0(x) =
b(x, 0)

1 + [a(x, 0)]2
, (5.14)

and
r0(X) = −p0(0)e−a(0,0)X . (5.15)

In general, if y(x, ε) is the solution to (5.1), where a(x, ε), b(x, ε) are real
valued, a(x, ε) > 0 and y(0, ε) = 0, then

y(x, ε) = p(x, ε) cos(x/ε) + q(x, ε) sin(x/ε) + r(x, ε), (5.16)

where

p(x, ε) =
N−1∑
n=0

εnpn(x) + O(εN ), q(x, ε) =
N−1∑
n=0

εnqn(x) + O(εN ), (5.17)
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and

r(x, ε) =
N−1∑
n=0

εnrn(x/ε) + O(εN ) (5.18)

all uniformly as ε → 0+ for 0 ≤ x ≤ 1, where pn(x), qn(x) ∈ C∞([0, 1]),
and rn(X) ∈ C∞([0,∞]). Furthermore, in specific cases, the terms of these
expansions can be determined with the help of ProbA, as in Exercise 5.1.

The asymptotic expansion of an integral such as (5.7), where φ(x, t, T, ε)
is given by (5.5), is rather different if Re[v(x, t, ε)] = 0. We will need the
proposition below in the next section.

Proposition 3. Assume g(x), h(x) ∈ C∞([0, 1]) are real valued, h(0) = 0,
and

F (x, ε) = ε−1

∫ x

0

e−ih(t)/εg(t) dt. (5.19)

(a). If h′(x) �= 0 for 0 ≤ x ≤ 1, then there exists c(ε), un(x) ∈ C∞([0, 1])
such that

F (x, ε) = c(ε) + φ(x, ε)e−ih(x)/ε, (5.20)

where, for any N ≥ 0,

φ(x, ε) =
N−1∑
n=0

εnun(x) + O(εN ) (5.21)

uniformly as ε → 0+ for 0 ≤ x ≤ 1.

(b). If h′(x) > 0 for 0 < x ≤ 1, h′(0) = 0 and h′′(0) > 0, then there ex-
ists c(ε̂), un(x) ∈ C∞([0, 1]) and vn(X) ∈ C∞([0,∞]) such that

ε̂F (x, ε) = c(ε̂) + φ(x, ε̂)e−ih(x)/ε (5.22)

where ε̂ = ε1/2 and, for any N ≥ 0,

φ(x, ε̂) =
N−1∑
n=0

ε̂n[un(x) + vn(x/ε̂)] + O(ε̂N ) (5.23)

uniformly as ε̂ → 0+ for 0 ≤ x ≤ 1.

Proof. If h′(x) �= 0 for 0 ≤ x ≤ 1, then u0(x) = −ig(x)/h′(x) is in C∞([0, 1])
and an integration by parts yields

F (x, ε) = u0(0) − u0(x)e−ih(x)/ε + εF1(x, ε), (5.24)

where
F1(x, ε) = ε−1

∫ x

0

e−ih(x)/εu′
0(t) dt. (5.25)
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But this means

F1(x, ε) = u1(0) − u1(x)e−ih(x)/ε + εF2(x, ε), (5.26)

where u1(x) = −iu′
0(x)/h′(x) and

F2(x, ε) = ε−1

∫ x

0

e−ih(t)/εu′
1(t) dt. (5.27)

Obviously we can repeat this process indefinitely, and this proves Part (a) of
the proposition. Indeed, we have un(x) = −iu′

n−1(x)/h′(x) for n ≥ 1 and we
can choose c(ε) to be any function in C∞([0, 1]) such that c[n](0) = un(0).

To prove Part (b), let s = [h(x)]1/2, let x = θ(s) denote the inverse of this
transformation, and let G(s) = g(θ(s))θ′(s). Then

ε̂F (x, ε) = ε̂−1

∫ [h(x)]1/2

0

e−i(s/ε̂)2 [G(0) + 2isG1(s)] ds, (5.28)

where G1(s) = (2is)−1[G(s) − G(0)], and an integration by parts reveals

ε̂F (x, ε) = H(0, ε) − H([h(x)]1/2, ε) + εF1(x, ε), (5.29)

where
H(x, ε) = e−ix2/ε[Ψ(x/ε̂)G(0) + ε̂G1(x)], (5.30)

Ψ(x) = eix2
∫ ∞

x

e−is2
ds, (5.31)

and

F1(x, ε) = ε̂−1

∫ [h(x)]1/2

0

e−i(s/ε̂)2 [G′
1(0) + 2isG2(s)] ds. (5.32)

where G2(s) = (2is)−1[G′
1(s) − G′

1(0)]. So again we have a process we can
iterate indefinitely. Furthermore, Ψ(x) ∈ C∞([0,∞]), as we see in Exercise
5.2, and therefore we can expand Ψ([h(x)]1/2/ε̂) = Ψ((x/ε̂)[h(x)/x2]1/2) ac-
cording to Theorem 1. This leads directly to (5.22)-(5.23).

5.2 Problem I, Part 1

For our final problem, we seek an asymptotic expansion for the solution to

ε2y′′ + a(x, ε)y = ε1/2b(x, ε) cos(x/ε) (5.33)
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satisfying the initial conditions y(0, ε) = α(ε), y′(0, ε) = ε−1β(ε). The func-
tions a(x, ε), b(x, ε) ∈ C∞([0, 1] × [0, εo]) and α(ε), β(ε) ∈ C∞([0, εo]) for
some εo > 0 are assumed to be real, and we assume a(x, ε) > 0. We further
assume, for some xo ∈ (0, 1), that a00(x) < 1 for 0 ≤ x < xo and a00(x) > 1
for xo < x ≤ 1, where, in general, aij(x) = a[i,j](x, 0), bij(x) = b[i,j](x, 0).
Finally, we assume a10(xo) �= 0.

If (instead) a(x, ε) = (1 + εc)2, where c is a constant, and b(x, ε) = ε1/2,
then

y(x, ε) = α(ε) cos[(1+ εc)(x/ε)]+
β(ε)

1 + εc
sin[(1+ εc)(x/ε)]+ yp(x, ε), (5.34)

where, in the particular solution

yp(x, ε) = M(x, ε) sin(x/ε) + N(x, ε) cos(x/ε), (5.35)

assuming |c| << 1/ε, the amplitudes

M(x, ε) =
sin(cx)

c(2 + εc)
, N(x, ε) =

1 − cos(cx)
c(2 + εc)

(5.36)

oscillate slowly compared to sin(x/ε) and cos(x/ε), unless c = 0, in which
case M(x, ε) = x/2, N(x, ε) = 0. The point of Problem I is see what happens
if a(x, ε) comes close to 1 but only momentarily equals 1 as x increases from
0 to 1.

As in Problem H, it is convenient to let w(x, ε) be the solution to (5.33)
with eix/ε in place of cos(x/ε), so that y(x, ε) = Re[w(x, ε)]. In analogy with
Problem D, as in [11], the homogeneous equation for w(x, ε) has a pair of
linearly independent solutions,

w
(1)
h (x, ε) = eis(x)/εu(x, ε), w

(2)
h (x, ε) = w̄

(1)
h (x, ε), (5.37)

where w̄
(1)
h (x, ε) is the complex conjugate of w

(1)
h (x, ε),

s(x) =
∫ x

0

[a00(t)]1/2 dt, (5.38)

and u(x, ε) has a uniformly valid asymptotic expansion,

u(x, ε) =
N−1∑
n=0

εnun(x) + O(εN ), (5.39)

for 0 ≤ x ≤ 1, where un(x) ∈ C∞([0, 1]). In particular, if we take u(0, ε) = 1,
it is readily determined that

u0(x) = [a00(0)/a00(x)]1/4eir(x), (5.40)
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where
r(x) =

1
2

∫ x

0

[a00(t)]−1/2a01(t) dt. (5.41)

Furthermore, the Wronskian of these two solutions is ε−1Δ(ε), where Δ(ε)
is pure imaginary and also has an asymptotic expansion in powers of ε. In
particular, Δ(0) = −2i[a00(0)]1/2. It follows by the method of variation of
parameters that the full equation for w(x, ε) has a particular solution of the
form

wp(x, ε) = A(x, ε)w(1)
h (x, ε) + B(x, ε)w(2)

h (x, ε) (5.42)

where
A(x, ε) = ε−1/2

∫ x

xo

e−i[s(t)−t]/εζ̄(t, ε) dt, (5.43)

B(x, ε) = ε−1/2

∫ x

xo

ei[s(t)+t]/εζ(t, ε) dt, (5.44)

with ζ(x, ε) = b(x, ε)u(x, ε)/Δ(ε).
If we substitute t = t̂ + xo in (5.43) and let h(t̂ ) = s(t̂ + xo) − s(xo) − t̂,

then h′(t̂ ) > 0 for 0 < t̂ ≤ 1− xo, h(0) = h′(0) = 0 and h′′(0) = 1
2a′(xo) > 0.

Therefore, by Part (b) of Proposition 3,

A(x, ε) = e−i[s(xo)−xo]/ε[c(ε̂) + φ(x̂, ε̂)e−ih(x̂)/ε], (5.45)

where ε̂ = ε1/2, x̂ = x − xo, c(ε̂) ∈ C∞([0, 1]) and for any N ≥ 0,

φ(x̂, ε̂) =
N−1∑
n=0

ε̂n[un(x̂) + vn(x̂/ε̂)] + O(ε̂N ) (5.46)

uniformly as ε̂ → 0+ for 0 ≤ x̂ ≤ 1 − xo, that is, xo ≤ x ≤ 1, where
un(x̂) ∈ C∞([0, 1 − xo]), vn(X̂) ∈ C∞([0,∞]). Furthermore, −[s(xo) − xo] −
h(x̂) = −s(x)+x and therefore, by an application of Theorem 1, there exists
cA(ε̂) and φA(x̂, ε̂) such that

A(x, ε)w(1)
h (x, ε) = cA(ε̂)w(1)

h (x, ε) + φA(x̂, ε̂)eix/ε, (5.47)

where φA(x̂, ε̂) has a uniformly valid expansion of the same form as φ(x̂, ε̂).
Similarly, by Part (a) of Proposition 5.1, we find

B(x, ε)w(2)
h (x, ε) = cB(ε̂)w(2)

h (x, ε) + φB(x̂, ε̂)eix/ε, (5.48)

where φB(x̂, ε̂) also has a uniformly valid expansion like φ(x̂, ε̂), although
there are no vn(x̂/ε̂) terms. Consequently, when we substitute (5.47) and
(5.48) into (5.42) we see there is a particular solution w(+)(x, ε) = z(+)(x̂, ε̂)eix/ε

of the differential equation for w(x, ε), in addition to wp(x, ε), such that, for
certain u

(+)
n (x̂) ∈ C∞([0, 1 − xo]), v

(+)
n (X̂) ∈ C∞([0,∞]),
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z(+)(x̂, ε̂) =
N−1∑
n=0

ε̂n[u(+)
n (x̂) + v(+)

n (x̂/ε̂)] + O(ε̂N ) (5.49)

uniformly as ε → 0+ for 0 ≤ x̂ ≤ 1 − xo.
The differential equation for z(+)(x̂, ε̂) is

ε̂4z(+)′′ + 2iε̂2z(+)′ + [a(xo + x̂, ε̂2) − 1]z(+) = ε̂b(xo + x̂, ε̂2) (5.50)

and for the first term of the N -term outer expansion,

ONz(+)(x̂, ε̂) =
N−1∑
n=0

ε̂nz(+)
n (x̂), (5.51)

whose existence is implied by (5.49), it is apparent that z
(+)
0 (x̂) = 0. Also,

for the leading term of the N -term inner expansion of z(+)(x̂, ε̂),

INz(+)(x̂, ε̂) =
N−1∑
n=0

ε̂nZ(+)
n (X̂), (5.52)

it is clear from the differential equation

ε̂2Z(+)′′ + 2iε̂Z(+)′ + [a(xo + ε̂X̂, ε̂2) − 1]Z(+) = ε̂b(xo + ε̂X̂, ε̂2) (5.53)

for Z(+)(X̂, ε̂) = z(+)(xo + ε̂X̂, ε̂) that

2iZ
(+)′′
0 + a10(xo)X̂Z

(+)
0 = b00(xo). (5.54)

Thus, in terms of the function Ψ(x) ∈ C∞([0,∞]) introduced in the proof of
Proposition 3, and further discussed in Exercise 5.2, in order for O1I1z

(+)(x̂, ε̂)
to agree with the fact that I1O1z

(+)(x̂, ε̂) = 0, it must be that

Z
(+)
0 (X̂) =

ib00(xo)
2mo

Ψ(moX̂), (5.55)

where mo = 1
2 [a10(xo)]1/2. In other words, in (5.49),

u
(+)
0 (x̂) = 0, v

(+)
0 (X̂) = Z

(+)
0 (X̂). (5.56)

5.3 Problem I, Part 2

If we put t = xo − t̃ in (5.43) and let h(t̃) = s(xo − t̃) − s(xo) + t̃, then by
another application of Proposition 3, Part (b), we see, in addition to (5.45),
that
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A(x, ε) = e−i[s(xo)−xo]/ε[d(ε̂) + ψ(x̃, ε̂)e−ih(x̃)/ε], (5.57)

where x̃ = xo−x, d(ε̂) ∈ C∞([0, 1]) and ψ(x̃, ε̂) has a uniformly valid asymp-
totic expansion for 0 ≤ x̃ ≤ xo of the same form as the one for φ(x̂, ε̂)
on 0 ≤ x̂ ≤ 1 − xo. A similar statement applies to B(x, ε) and thus we
see, in addition to the particular solution w(+)(x, ε) = z(+)(x̂, ε̂)eix/ε to
the differential equation for w(x, ε), there is another particular solution,
w(−)(x, ε) = z(−)(x̃, ε̂)eix/ε, such that, for certain u

(−)
n (x̃) ∈ C∞([0, xo]),

v
(−)
n (X̃) ∈ C∞([0,∞]),

z(−)(x̃, ε̂) =
N−1∑
n=0

ε̂n[u(−)
n (x̃) + v(−)

n (x̃/ε̂)] + O(ε̂N ), (5.58)

uniformly as ε → 0+ for 0 ≤ x̃ ≤ xo. Furthermore, it is readily determined
from the differential equation for z(−)(x̃, ε̂), in analogy with the calculations
for z(+)(x̂, ε̂), that

u
(−)
0 (x̃) = 0, v

(−)
0 (X̃) = −v

(+)
0 (X̃). (5.59)

To solve now for y(x, ε) = Re[w(x, ε)], first we note that, since the dif-
ference between any two particular solutions of the differential equation for
w(x, ε) is a solution to the corresponding homogeneous differential equation,
there exists c1(ε), c2(ε) such that

w(−)(x, ε) = w(+)(x, ε) + c1(ε)w
(1)
h (x, ε) + c2(ε)w

(2)
h (x, ε). (5.60)

Furthermore, to determine c1(ε) and c2(ε) we have, in view of (5.56) and
(5.59),

w(−)(xo, ε) − w(+)(xo, ε) = [2Z(−)(0) + O(ε̂)]eixo/ε, (5.61)

and also

w(−)′(xo, ε) − w(+)′(xo, ε) = ε−1[2iZ
(−)
0 (0) + O(ε̂)]eixo/ε. (5.62)

In addition,
w

(1)
h (xo, ε) = [u0(xo) + O(ε)]eis(xo)/ε, (5.63)

w
(1)′
h (xo, ε) = ε−1[iu0(xo) + O(ε)]eis(xo)/ε, (5.64)

and, of course, w
(2)
h (xo, ε) = w̄

(1)
h (xo, ε). Therefore, from (5.60) and its deriva-

tive evaluated at x = xo, and the fact that Ψ(0) = (
√

π/2)eiπ/4, what we find
is

c1(ε) =
√

πb00(xo)
2mo[a00(0)]1/4

ei{−3π/4+[xo−s(xo)]/ε−r(xo)} + O(ε̂) (5.65)

and c2(ε) = O(ε̂). Consequently,
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Re[w(−)(x, ε)] = Re[w(+)(x, ε)] + [ρ0(x, ε) + O(ε̂)] cos[r(x) + s(x)/ε]

+ [σ0(x, ε) + O(ε̂)] sin[r(x) + s(x)/ε], (5.66)

where

ρ0(x, ε) =
√

πb00(xo)
2mo[a00(x)]1/4

cos{3π/4 − [xo − s(xo)]/ε + r(xo)}, (5.67)

σ0(x, ε) =
√

πb00(xo)
2mo[a00(x)]1/4

sin{3π/4 − [xo − s(xo)]/ε + r(xo)}. (5.68)

Similarly, the difference between the particular solution w(−)(x, ε) and the
one that satisfies the initial conditions w(0, ε) = α(ε), w′(0, ε) = ε−1β(ε) also
is a solution to the corresponding homogeneous differential equation. Thus
we find, for the solution to Problem I,

y(x, ε) = Re[w(−)(x, ε)] + [λ0(x) + O(ε̂)] cos[r(x) + s(x)/ε]

+ [μ0(x) + O(ε̂)] sin[r(x) + s(x)/ε], (5.69)

where, with α0 = α(0) and β0 = β(0),

λ0(x) = α0[a00(0)/a00(x)]1/4, μ0(x) = β0[a00(0)a00(x)]−1/4. (5.70)

To deal with Re[w(−)(x, ε)] and Re[w(+)(x, ε)], note that Ψ(x) = p(x) +
iq(x), where

p(x) =
∫ ∞

x

(cos x2 cos s2 + sin x2 sin s2) ds, (5.71)

q(x) =
∫ ∞

x

(sinx2 cos s2 − cosx2 sin s2) ds. (5.72)

It follows that

Re[w(−)(x, ε)] =
b00(xo)
2mo

[
[q(mo(x0 − x)/ε̂) + O(ε̂)] cos(x/ε)

+ [p(mo(xo − x)/ε̂) + O(ε̂)] sin(x/ε)
]

(5.73)

for 0 ≤ x ≤ xo, and

Re[w(+)(x, ε)] = −b00(xo)
2mo

[
[q(mo(x − xo)/ε̂) + O(ε̂)] cos(x/ε)

+ [p(mo(x − xo)/ε̂) + O(ε̂)] sin(x/ε)
]
. (5.74)

for xo ≤ x ≤ 1. Finally then, when we combine everything, we have



80 5 Oscillation Problems

y(x, ε) = A(x, ε) cos[r(x) + s(x)/ε] + B(x, ε) sin[r(x) + s(x)/ε]

+ C(x, ε) cos(x/ε) + D(x, ε) sin(x/ε), (5.75)

where A(x, ε) has a uniformly valid expansion

A(x, ε) =
N−1∑
n=0

ε̂nAn(x, ε) + O(ε̂N ) (5.76)

stemming from (5.49), (5.58) and (5.39), in which each An(x, ε) = O(1) for
0 ≤ x ≤ 1, and there are corresponding expansions for B(x, ε), C(x, ε) and
D(x, ε). In particular, we have determined

A0(x, ε) = λ0(x) + H(x − xo)σ0(x, ε), (5.77)

B0(x, ε) = μ0(x) + H(x − xo)ρ0(x, ε), (5.78)

and

C0(x, ε) =
b00(xo)
2mo

q(mo|x − xo|/ε̂)sgn(x − xo) (5.79)

D0(x, ε) =
b00(xo)
2mo

p(mo|x − xo|/ε̂)sgn(x − xo), (5.80)

where H(x) = 0 for x < 0, H(x) = 1 for x > 0, and sgn(x) = H(x)−H(−x).
In Figure 5.1, a graph of the uniformly valid O(1) approximation

y0(x, ε) = A0(x, ε) cos[r(x) + s(x)/ε)] + B0(x, ε) sin[r(x) + s(x)/ε]

1.00.4

0

0.0 0.2 0.80.6

−2

1

2

−1

Fig. 5.1 Uniformly valid asymptotic approximation of the solution to (5.33) when
a(x, ε) = 1/4 + 2x + ε, b(x, ε) = 1, y(0, ε) = 1), y′(0, ε) = 0 and ε = 0.001.
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Fig. 5.2 Outer approximation of the approximate solution to (5.33) shown in Figure 5.1.

+ C0(x, ε) cos(x/ε) + D0(x, ε) sin(x/ε) (5.81)

is shown for the case

a(x, ε) =
1
4

+ 2x + ε, b(x, ε) = 1, α(ε) = 1, β(ε) = 0, ε = 0.001.

(5.82)
Although Maple’s plotting routine obviously is being pushed to the limit here,
it is easy to check that the result in this case is virtually indistinguishable
from Maple’s numerical solution of (5.33) . Also, on any subinterval of [0, 1]
excluding the point x = xo, the inner expansion terms C0(x, ε) and D0(x, ε)
are uniformly O(ε̂) and therefore y(x, ε) = y00(x, ε) + O(ε̂), where

y00(x, ε) = A0(x, ε) cos[r(x) + s(x)/ε)] + B0(x, ε) sin[r(x) + s(x)/ε]. (5.83)

A graph of the (outer) approximation y00(x, ε), again assuming (5.82), is
shown in Figure 5.2. In general, the amplitude jump in y00(x, ε) at x = xo

is from [λ0(xo)2 + μ0(xo)2]1/2 to the square root of [λ0(xo) + ρ0(xo)]2 +
[μ0(xo) + σ0(xo, ε)]2, and in the case of (5.82), this jump is from

√
2/2 to

[(1 + π)/2 +
√

π cos(3π/4 − 997/12)]1/2.

5.4 Exercises

5.1. Specific solutions to Problem H quickly become unwieldy. For example,
if a(x, ε) = 2 + x + ε and b(x, ε) = 1 + x2, using ProbA with
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a := 2 + x + ε + I; b := 1 + x2 (5.84)

to solve (5.9) for the terms of (5.8) yields

u0(x) =
1 + x2

x + 2 + i
(5.85)

and therefore, in agreement with (5.14),

p0(x) =
x3 + 2x2 + x + 2

x2 + 4x + 5
, q0(x) =

x2 + 1
x2 + 4x + 5

. (5.86)

But then

u1(x) = − x3 + 3x2 + 5x + 1 + i(x2 + 2x + 1)
x3 + 6x2 + 9x + 2 + i(3x2 + 12x + 11)

(5.87)

and, with the help of Maple’s evalc command, this implies

p1(x) = − x6 + 9x5 + 35x4 + 78x3 + 95x2 + 53x + 13
x6 + 12x5 + 63x4 + 184x3 + 315x2 + 300x + 125

, (5.88)

q1(x) = − 2x5 + 13x4 + 40x3 + 70x2 + 54x + 9
x6 + 12x5 + 63x4 + 184x3 + 315x2 + 300x + 125

. (5.89)

On the other hand, the ProbA calculation immediately reveals

r0(X) = −2
5
e−2X r1(X) =

1
125

(925X2 + 50X + 13))e−2X . (5.90)

5.2. Let Ψ(x) be the function introduced in the proof of Proposition 3. Use
integration by parts to show Ψ(x) has an asymptotic expansion in pow-
ers of x−1 as x → ∞, and therefore Ψ(x) ∈ C∞([0,∞]). Show also that
Ψ(0) = 1

2π1/2e−iπ/4.

5.3. In Problem I, from the solution of the differential equation for z
(+)
1 (x̂),

show that

u
(+)
1 (x̂) =

b00(xo + x̂)
a00(xo + x̂) − 1

− b00(xo)
a10(xo)x̂

, (5.91)

v
(+)
1 (X̂) = Z

(+)
1 (X̂) − Z

(+)
1 (∞), (5.92)

and

Z
(+)
1 (∞) =

b10(xo)
a10(xo)

− b00(xo)a20(xo)
[a10(xo)]2

. (5.93)

Show also that u
(−)
1 (x̃) = u

(+)
1 (−x̃) and v

(−)
1 (X̃) = v

(+)
1 (X̃).

5.4. Show that
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eix2
∫ x

0

Ψ(s)e−is2
ds = xΨ(x) +

i

2
(1 − eix2

), (5.94)

eix2
∫ x

0

s2Ψ(s)e−is2
ds =

1
6
[2x3Ψ(x) + ix2 + 1 − eix2

]. (5.95)

and use these results to determine Z
(+)
1 (X̂) from (5.53).
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